
Strong Normalisation for System F

Thomas Waring

September 18, 2020

Contents

1 Introduction 1

2 Church-Rosser Theorem 2

3 Strong Normalisation 2
3.1 Preamble . 2
3.2 Reducibility candidates . 3
3.3 Reducibility with parameters . 4
3.4 Reducibility . 6

4 Second-order Arithmetic 7
4.1 Assumptions . 7
4.2 What we can’t do . 8
4.3 What we can do . 9

1 Introduction

The reference for these notes is [GLT93], chapter 11 (for definitions) and chapter 14 (for nor-
malisation). First we briefly lay out the structure of System F.

We skip for now proper definitions of free variables and of substitution. In short, free
variables are those not “bound” by λ- or universal abstraction. The substitution arb{cs denotes
replacing all free occurences of the variable c in a with b. Also, note that terms are considered
up to α-equivalence: changing the names of bound variables. For more detail see [Sel08] chapter
8, noting slight differences of notation.

Types are defined inductively, starting from an infinite set X,Y, Z, . . . of type variables, and
with three rules.

1. Type variables are types.

2. If U and V are types, then U Ñ V is a type.

3. If V is a type, and X is a type variable, then ΠX.V is a type.

From this, there are five ways to form terms.

1. Variables: xT , yT , zT , . . . of type T .

2. Application: if t and u are terms of type U Ñ V and U , then tu is a term of type V .

1

3. λ-abstraction: if xU is a variable of type U , and v is a term of type V then λxU .v is a
term of type U Ñ V .

4. Universal application (or extraction): if t is a term of type ΠX.V and U is type, then tU
is a term of type V rU{Xs.

5. Universal abstraction: if v is a term of type V , then ΛX.v is a term of type ΠX.V , so
long as X is not free in the type of any free variable of v.

There are two “reduction” operations on terms. The first familiar is familiar (as β-reduction)
from simply typed lambda calculus:

pλxU .vqu ù vru{xs.

The second is its equivalent for universal abstraction / application:

pΛX.vqU ù vrU{Xs.

The restriction on universal abstraction arises to avoid terms of the form ΛX.xX , where the
free variable x has no type. On the other hand, the term ΛX.λxX .xX has the type ΠX.X Ñ

X. Note that fu1u2 :“ pfu1qu2. Free variables must have a defined type, to ensure that
λ-abstraction and β-reduction are well-defined.

A term is called neutral if it is of the form x, tu or tU . That is, if it does not start with an
abstraction of either type.

For a given term u, define νpuq to be the longest sequence of reductions starting with u. For
example:

pΛX.λxX .xqV vV ù pλxV .xqvV ù vV

so νppΛX.λxX .xqV vV q “ 2 (if v is a variable), as in each case there was a single possible
reduction (a single redex). The primary goal of these notes is to show that νpuq is finite for
every term u.

2 Church-Rosser Theorem

See [Gal90], §10.

3 Strong Normalisation

3.1 Preamble

The following idea comes from [Tai67], applied to Gödel’s System T: which amounts to simply
typed λ-calculus with additional “constant types”, for the integers and booleans1. The focus
there, however, is on precisely what system of arithmetic (logic) is required to represent this
system. In particular, the logic must be able to prove (define?) equality of terms under the
equivalent of β-reduction.

1Note that §1 of Tait’s paper is (to me) practically incomprehensible, but (bravely pushing on) §2 is better:
the language is similar to that of λ-calculus. The idea of “convertability” appears at the bottom of the first page.

2

3.2 Reducibility candidates

The key idea of this proof is that of reducibility candidates. In the simply typed case, we may
define a set REDT of reducible terms of type T , inductively on the type T . In particular, when
T “ U Ñ V , we have:

t P REDT ðñ @upu P REDU ùñ tu P REDV q

However, applying this to universal abstraction, the definition is circular. Let’s examine the
universal identity i “ ΛX.λxX .x to see this. Naively, we might say i is reducible if for any type
U , iU “ λxU .x, of type U Ñ U is reducible. Then, iU is reducible if for any term of type u,
iUu is reducible. But then we may set U “ ΠX.X Ñ X, and u “ i, and

iUu “ pΛX.λxX .xqpΠX.X Ñ XqpΛX.λxX .xq ù ΛX.λxX .x

So i is reducible, so long as i is reducible — no good.
The solution is to build our notion of reducibility up with the type. Then, a term t of type

ΠX.V is reducible if and only if for every type U , and for every reducibility candidate R, the
term tU is reducible of type T rU{Xs. We avoid circularity by defining reducibility of the new
term with respect to R, decoupling it from the original term t. We then need to show that the
property “is strongly normalising” is a reducibility candidate, which leads to the final result.

Definition 3.1. A reducibility candidate of type U is a set R of terms of type U , such that:

• (CR1) If t P R, then t is strongly normalising.

• (CR2) t P R and t ù t1, then t1 P R.

• (CR3) t is neutral, and whenever we convert a redex in t we obtain a term t1 P R, then
t P R also.

By (CR3), any term which is neutal and normal belongs to every reducibility candidate of
the appropriate type.

Lemma 3.2. The set SNU of strongly normalising terms of type U is a reducibility candidate.

Proof. (CR1) is tautological. If t ù t1, then νpt1q ă νptq, so t1 is also strongly normalising. If
there were an infinite path of reductions starting from t, then the t1 in the second step would
also not be strong normalising, so t1 R SNU .

Lemma 3.3. Given reducibility candidates R and S of types U and V , the set RÑ S of terms
of type U Ñ V is defined by:

t P RÑ S ðñ @upu P R ùñ tu P Sq

is a reducibility candidate.

Proof. (CR1) Given t P RÑ S and any u of type U , νptq ď νptuq, so t is strongly normalising.
(CR2) Let some t P R Ñ S be given, and t1 such that t ù t1. For any u, tu ù t1u, so

t1u P S (by 2). This implies t1 P RÑ S.
(CR3) Let some u P R and neutral t as in (CR3) be given. As t does not begin with

an abstraction, the only possible one-step reductions beginning with tu are tu ù t1u and
tu ù tu1, where t ù t1 and u ù u1 are one-step reductions. By assumption, t1 P R Ñ S,
which means that t1u P S. For the other case, we induct on νpuq, which is finite. u1 P R by (2),
and νpu1q ă νpuq, which implies, by induction, that tu1 P S. Therefore, by (CR3) applied to S,
tu P S, and so t P RÑ S.

3

3.3 Reducibility with parameters

Lemma 3.4. Let T r
¯
Xs be a type, and suppose the sequence

¯
X “ X1, X2, . . . is assumed to

contain all free (type) variables of T . With a sequence
¯
U of types, we may define a type T r

¯
U{

¯
Xs

by simultaneous substitution. Let R̄ be a sequence of reducibility candidates, with Ri of type Ui.
Then we can define a set REDT rR̄{

¯
Xs of terms of type T r

¯
U{

¯
Xs inductively by the following.

• If T “ Xi then REDT rR̄{
¯
Xs “ Ri.

• If T “ V ÑW , then REDT rR̄{
¯
Xs “ REDV rR̄{

¯
Xs Ñ REDW rR̄{

¯
Xs.

• If T “ ΠY.W , then REDT rR̄{
¯
Xs is the set of terms t of type T r

¯
U{

¯
Xs such that, for every

type V and reducibility candidate S of this type, tV P REDW rR̄{
¯
X,S{Y s.

Proof. As we will see later, this definition is remarkably circular as REDT rR̄{
¯
Xs is itself a

reducibility candidate. As such, we make the definition extra precise (as a lemma). We conceive
of this definition as a function, assigning to a type T , and substitution as defined, a set of terms of
type T r

¯
U{

¯
Xs. Note that, entirely separate from this definition, we have for each type U a family

CU of reducibility candidates of this type: this is defined by comprehension on definition 3.1.
The complexity cpT q of a type T is defined in the obvious way, counting the number of Λ or Ñ
symbols.

We seek to define a function for each type T , assigning a valid substitution (one including
all free variables) to the set REDT rR̄{

¯
Xs. In excruiciating detail, let X be the set of all type

variables, and Sub the set of partial functions:

X Ñ
ž

UPU
CU

with finite domain. Then for a given type T the domain ∆pT q of our function is the subset:

∆pT q “ tη P Sub | dompηq Ą FVtypepT qu

Let Σ be the set of System F terms. To induct, we need to prove that for any n P N, if we are
given the set:

tREDT : ∆pT q Ñ PΣ | cpT q ă nu (1)

then there is a unique choice of set:

tREDT : ∆pT q Ñ PΣ | cpT q ă n` 1u

corresponding to the above definition. From this perspective, the fact that REDT rR̄{
¯
Xs is a

set of terms of a particular type has been glossed over, so this must be part of the induction.
By the disjoint union, each η determines an assignment X Ñ U , for each free varibale. Abusing
our notation slightly we denote T rηs “ T r

¯
U{

¯
Xs, where ηpXiq is a reducibility candidate of type

Ui.
For n “ 0, T must be a variable X, so we assign REDT rηs “ ηpXq. If ηpXq is a reducibility

candidate of type U , then REDT rηs is a set of terms of type U “ T rηs.
For n ą 0, T is either an arrow or universal abstraction. If T “ V ÑW then for any given

η we may construct the set as usual, noting that the free type variable of V and W are each
at most those of T . Also, by the inductive hypothesis, the members of REDT rηs will terms of
type:

V rηs ÑW rηs “ T rηs

4

Finally, suppose T “ ΠY.W . For any η : ∆pW q Ñ
š

UPU CU and reducibility candidate S of
type V , define:

pη ` S{Y qpXq “
"

S X “ Y
ηpXq else

Then we define REDT rηs to be the set of terms of type ΠY.W rηs, such that for any type V and
reducibility candidate S of that type, tV P REDW rη ` S{Y s.

This constructs REDT rηs for any T of complexity n, and η P ∆pT q, so by induction our
construction uniquely determines the sets as claimed.

Remark 3.5. Observe that the notation REDT rR̄{
¯
Xs does not explicitly include the substitu-

tions Ui{Xi, which are nonetheless necessary to choose the right Ri (see [Gal90] p.38).

Example 3.6. If T “ ΠX.X Ñ X, then (with
¯
X empty), REDT r´s is the set of terms t with

type T , such that for every type V and reducibility candidate S:

tV P REDXÑXrS{Xs “ S Ñ S.

Lemma 3.7. REDT rR̄{
¯
Xs is a reducibility candidate of type T r

¯
U{

¯
Xs.

Proof. By induction on T . The only case we need verify is T “ ΠY.W . CR1 and CR2 are
practically indentical to Lemma 3.3, and CR3 is easier.

(CR1) Let some t P REDT rR̄{
¯
Xs be given. With an arbitrary type V , and arbitrary re-

ducibility candidate S, tV is strongly normalising, by inductively applying (CR1) to REDW rR̄{
¯
X,S{Y s.

As νptq ď νptV q, t is also strongly normalising.
(CR2) If t ù t1, then for any type V , tV ù t1V . Given a reducibility candidate S of this

type, by induction:
t1V P REDW rR̄{

¯
X,S{Y s

so t1 P REDT rR̄{
¯
Xs.

(CR3) Suppose that t is neutral, and every term t1 one step from t belongs to REDT rR̄{
¯
Xs.

Then for any type V , the only one-step reductions of tV are of the form t1V , as t is neutral.
Since t1 P REDT rR̄{

¯
Xs, t1V P REDW rR̄{

¯
X,S{Y s for every candidate S. By (CR3), this means

t P REDT rR̄{
¯
Xs.

Lemma 3.8. REDT rV {Y srR̄{¯
Xs “ REDT rR̄{

¯
X,REDV rR̄{

¯
Xs{Y s

Proof. Again, induction on T . First, if T is a variable, then T “ Xi or T “ Y . In the first
case, T rV {Y s “ T , and both sides are Ri by definition. In the latter case, both sides are
REDV rR̄{

¯
Xs.

If T “W1 ÑW2, then the left-hand side is:

REDW1rV {Y sÑW2rV {Y srR̄{¯
Xs “ REDW1rV {Y srR̄{¯

Xs Ñ REDW2rV {Y srR̄{¯
Xs

The right-hand side is

REDW1rR̄{¯
X,REDV rR̄{

¯
Xs{Y s Ñ REDW2rR̄{¯

X,REDV rR̄{
¯
Xs{Y s

By induction REDWirV {Y srR̄{¯
Xs “ REDWirR̄{¯

X,REDV rR̄{
¯
Xs{Y s, for i “ 1, 2, so the two

expressions agree.
Finally, let T “ ΠZ.W . Then T rV {Y s “ ΠZ.pW rV {Y sq, so the equality is clear by applying

the inductive hypothesis to W .

5

3.4 Reducibility

We eventually want to induct on the construction of a term, to ensure its reducibility (with
reference to some fixed sequence of candidates). The variable and application cases are simple,
but the others require the following lemmas.

Lemma 3.9 (λ-abstraction). If for every v P REDV rR̄{
¯
Xs the term wrv{ys P REDW rR̄{

¯
Xs,

then λyV .w P REDVÑW rR̄{
¯
Xs.

Proof. We need to show that pλyV .wqv P REDW rR̄{
¯
Xs for every v P REDV rR̄{

¯
Xs. Let such a

v be given. Noting that by assumption (with v “ y), w is strongly normalising, we induct on
νpvq ` νpwq. Considering one-step reductions from pλyV .wqv, there are three cases. In each,
they belong to REDW rR̄{

¯
Xs.

• pλyV .wqv1 with v ù v1 in one step. Then νpv1q ă νpvq.

• pλyV .w1qv with w ù w1 in one step. Then νpw1q ă νpwq.

• wrv{ys P REDW rR̄{
¯
Xs by assumption.

As we are dealing with an application, (CR3) implies that pλyV .wqv P REDW rR̄{
¯
Xs, which

implies the result.

Lemma 3.10 (Universal application). If t P REDΠY.W rR̄{
¯
Xs, then tV P REDW rV {Y srR̄{¯

Xs.

Proof. By assumption, for any reducibility candidate S of type V , tV P REDW rR̄{
¯
X,S{Y s.

Taking S “ REDV rR̄{
¯
Xs and using Lemma 3.8 the result is immediate.

Lemma 3.11 (Universal abstraction). If for every type V and candidate S of that type,
wrV {Y s P REDW rR̄{

¯
X,S{Y s, then ΛY.w P REDΠY.W rR̄{

¯
Xs.

Proof. Given a type V and candidate S, we must show that pΛY.wqV P REDW rR̄{
¯
X,S{Y s.

This is entirely analogous to the λ-abstraction case, now we induct on νpwq. Converting a redex
in pΛY.wqV gives two cases:

• pΛY.wqV ù pΛY.w1qV , where νpw1q ă νpwq.

• pΛY.wqV ù wrV {Y s P REDW rR̄{
¯
X,S{Y s by assumption.

Applying (CR3) and the definition of REDΠY.W rR̄{
¯
Xs the result follows.

Now we are ready to prove the final result. As for the simply-typed case, we induct on a
stronger predicate to allow for a well-formed argument.

Theorem 3.12. Let t be any term of type T , with free variables among x1, . . . , xn, of types
U1, . . . , Un. Suppose also that the free type variables of T,U1, . . . , Un are among X1, . . . , Xm.
Let R1, . . . ,Rm be reducibility candidates of types V1, . . . , Vn, and u1, . . . , un terms of types
U1r

¯
V {

¯
Xs, . . . , Unr

¯
V {

¯
Xs, each in REDU1rR̄{¯

Xs, . . . ,REDUnrR̄{¯
Xs. Then:

tr
¯
V {

¯
Xsr

¯
u{

¯
xs P REDT rR̄{

¯
Xs

Proof. We induct on the construction of t. If t is a variable, say xi, then T r
¯
V {

¯
Xs “ Uir

¯
V {

¯
Xs,

and tr
¯
V {

¯
Xsr

¯
u{

¯
xs “ ui P REDUirR̄{¯

Xs “ REDT rR̄{
¯
Xs.

If t “ vw, then both vr
¯
V {

¯
Xsr

¯
u{

¯
xs and wr

¯
V {

¯
Xsr

¯
u{

¯
xs belong to the appropriate set by

induction. By definition, this implies that:

vr
¯
V {

¯
Xsr

¯
u{

¯
xspwr

¯
V {

¯
Xsr

¯
u{

¯
xsq “ tr

¯
V {

¯
Xsr

¯
u{

¯
xs

6

belongs to REDT rR̄{
¯
Xs.

Let t “ λyV .w of type V ÑW . By the inductive hypothesis

wr
¯
V {

¯
Xsr

¯
u{

¯
x, v{ys P REDW rR̄{

¯
Xs

for every v of type V r
¯
V {

¯
Xs. Then by Lemma 3.9 we have that:

λyV r
¯
V {

¯
Xs.wr

¯
V {

¯
Xsr

¯
u{

¯
xs “ tr

¯
V {

¯
Xsr

¯
u{

¯
xs

belongs to our reducible set.
If t “ t1V , with t1 of type ΠY.T 1, making T “ T 1rV {Y s. By the inductive hypothesis,

t1r
¯
V {

¯
Xsr

¯
u{

¯
xs P REDΠY.T 1rR̄{

¯
Xs

Applying Lemma 3.10 implies the result.
The final case is t “ ΛY.w. Again, using the inductive hypothesis, for any type V and

reducibility candidate S of this type:

wr
¯
V {

¯
X,V {Y sr

¯
u{

¯
xs P REDW rR̄{

¯
X,S{Y s

We apply Lemma 3.11 which implies the result.

Corollary 3.13. Every term of System F is strongly normalising.

Proof. Apply the above, with Vi “ Xi and uj “ xj , making each substitution the identity. Any
sequence Ri of reducibility candidates works, for example the sets SN i of strongly normalising
terms of type Xi. Then (CR1) implies that every term is strongly normalising.

4 Second-order Arithmetic

This section examines Girard’s proof to elucidate exactly where the ideas go beyond second-
order arithmetic. The key observations are in Section 4.2: we cannot express the membership
REDT rR̄{

¯
Xs as a predicate in the “codes” of T and the substitution. This links fairly explicitly

to Gödel’s incompleteness theorem, which demonstrates that any proof of strong normalisation
must go beyond second-order.

4.1 Assumptions

Second-order arithmetic is a logical system dealing with natural numbers and subsets thereof.
Without going into detail, it consists of the usual first order Peano axoims, where in the induc-
tion we are allowed to quantify over set variables, and a comprehension scheme:

DZ@npn P Z ðñ φpnqq (2)

where Z does not appear free in the predicate φ. Capital letters indicate set variables, and
lower case for integers. Predicates are denoted with Greek letters.

Most of the above proof can be performed inside second-order arithmetic by coding terms
and types as integers. Rather than doing this entirely formally, we assume given such a coding,
and use the common-sense principles of it. It is instructive to lay out what these principles are.
Throughout, we ignore possible issue of clashes in coding: for example, if we have systems to
code two distinct concepts as integers, we may assign one to the multiples of 2, and the other
to the multiples of 3.

7

• As N ˆ N is countable, we can code pairs of integers, and as such finite sequences, as
integers. We may encode functions (partial or total) N Ñ N as sets of integers, using a
graph.

• We assume given a coding of terms and of types into integers (as variable sets are taken
to be countable). The predicates, “x codes a type”, “y codes a term” and “x codes a term
of type y” should be expressible. Similarly, statements about the construction of terms,
for example “x, y and z code terms u, v, t, and t “ uv”, should be expressible, as should
the sets of free term and type variables.

• By induction, we can define the set corresponding to the complexity function.

• Statements about one-step β-reduction should be encodable. For example, “x and y code
for terms, and x Ñβ y”. We should also be able to express that a term is normal (or
neutral).

• Using this, we can reason about strong normalisation. First, a sequence (set coding a
function NÑ N) of terms is a reduction path for x if the following holds (loosely):

p0, xq P X ^ ppn, yq, pn` 1, y1q P X ùñ y Ñβ y
1q

• Using this, we can code for the predicate “x codes a term which is strongly normalising”,
by quantification over such sets. The statement “the sequence X is infinite” is expressible.
In a similar way, we can express the function νpxq, as the length of a sequence is definable.

Now we closely examine the proofs of Section 3 to see what can and can’t be done in second-
order arithmetic. The short answer is that there is no second-order formula in T and η defining
a set REDT rηs which satisfies the definition of Lemma 3.4. (Specifically, T is the problem.)

4.2 What we can’t do

As mentioned, it is in defining REDT rηs that we run into trouble: this discussion is an adaption
of Remark 4.B.7 in [Gir87] (p.254-5), there applied to a first order system of natural deduction.
For a fixed type, we are okay. We can define the substitution η as a relation (subset of NˆN),
where px, yq P η if x codes a type variable Xi, and y codes for a term in the chosen set Ri.
Then we can write down the comprehension for the set REDT rηs as a sequence of first- and
second-order quantifications. Take Example 3.6: in words, a term t P REDΠX.XÑXr´s if for
every type V , reducibility candidate S of that type, and term v of type V , the term tV v P S.
In symbols (glossing over predicates like “codes a type”):

REDΠX.XÑXr´s “ tt | @V,S, v pv P S ùñ tV v P Squ

In more complicated cases, we can still define extensions η`S{Y , so this format works. However,
we cannot translate this into a general comprehension, which constructs the set REDT rηs given
the codes of the type T and set η. (That is, with the codes of T and η as free variables in
the predicate φ of eq. (2).) This comes from the fact that the length of the defining predicate
(@V,S, v pv P S ùñ tV v P Sq above) increases with the complexity of the type T .

Let us look at this in the context of Lemma 3.4. For a predicate φ, with n a free number
variable (and other free number and set variables

¯
m and

¯
X), the general second-order induction

scheme is:
@

¯
m@

¯
X pφp0q ùñ @npφpnq ùñ φpn` 1qq ùñ @nφpnqq

8

The set of eq. (1) is uncountable, but defining the set:

REDnrηs “
ď

cpT qăn

tT u ˆ REDT rηs (3)

we then induct on the predicate:

φpnq “ @ηD1REDnrηs

However, while this argument proves that REDT rηs exists, it does not express membership of
that set as a predicate. For example, if T “ ΠY.W , with cpW q “ n, then assuming φpnq, and
given η we may define REDT rηs as:

t P REDT rηs ðñ @V,S ppW, tV q P REDnrη ` S{Y sq.

This is, effectively, constructing by induction a predicate specific to T . Once we have our
predicate for W (inside the paratheses above), we tack on quantifier to make it suitable for T .
This, I think, is the problem with formalising Girard’s proof in second-order arithmetic.

Remark 4.1. We can make sense of this discussion in terms of Gödel incompleteness. The
problem with formalising our proof is that the defining predicate for REDT rηs varies with the
structure of our type T . A predicate is just a finite list of symbols, which can therefore be coded
in second-order arithmetic, and it is reasonable to assume that we may represent the function
p assigning a type T to the code of its predicate (which has one free number variable, for t, and
one set, for η).

Under this assumption, our problem reduces to find a predicate Em,npA,
¯
x,

¯
Xq which is true

whenever A codes for a predicate with free number and set variables x1, . . . , xm and X1, . . . , Xn,
and such a predicate is true evaluated on the given values. In this case, we define

REDT rηs “ tt | E1,1pppT q, t, ηqu

Glossing over the fact we only need E to work for certain predicates ppT q, such an E cannot exist.
We have not properly discussed this, but proofs in second-order arithmetic can be represented
as finite labelled trees, and thus as an integer. Checking the validity of the tree represented by
a code should also be possible, as should inducting on their heights. Let Cpτq be the predicate
which is the conclusion of the tree coded by τ , and hpτq its height. But then, induction on the
predicate:

@τphpτq ă n ùñ E0,0pCpτqqq

amounts to a proof that the deduction rules are sound, which can be done. But this proves
exactly the consistency of second-order arithmetic: our system proves no false formula. As such,
E directly contradicts the Second Incompleteness Theorem. In this way, the analogy between
the proofs of strong normalisation and consistency becomes clearer. In order to prove these
statements, we must induct on a statement which is too strong to be expressed in the system.
For strong normalisation, it is REDT rηs, as in Theorem 3.12, and for consistency it is some
“truth predicate”.

4.3 What we can do

The above establishes that, inside second-order arithmetic, we cannot prove strong normalisa-
tion for all of System F. (More properly, this fact follows from Gödel’s second incompleteness
theorem, but the above makes sense of this claim for this specific proof.) What we can do,
however, is demonstrate that a particular term is strongly normalising.

9

The key here is that we only need to think about (apply the defining properties of) the sets
REDT r´s for a finite number of types T (note here that it is okay for the substitution to vary,
because the predicate changes with the type). This is fine in second-order arithmetic, as we can
just write down those reducibilities explicitly. With this in mind, first we examine the proofs
of Section 3, under the assumption that the defining properties of REDT r´s hold; then, we will
tally up how many of these sets we actually deal with, for a given term.

The basic properties of reducibility candidates (in Section 3.2) go through okay: we can
reason about strong normalisation and the function ν as remarked above. Assuming given the
sets REDT rηs, we can prove that they are reducibility candidates (Lemma 3.7). Moreover, we
only apply the inductive hypothesis to immediate subtypes (this also includes Lemma 3.3). In
a similar way, Lemma 3.8 goes through. Again, we only deal with the subtypes (substituted
and un-substituted) of the type T in question. (NB: this would become a problem, if applied
to infinitely many of these substitutions.)

Likewise, the proofs of Lemmas 3.9 to 3.11 go through on the back of the properites of
REDT rηs. Now we fix a term t, and trace the induction of Theorem 3.12 to check that we only
deal with finitely many reducibility predicates. Mostly this amounts to Girard’s remark that
we only need the reducibility predicates of our term and its subterms. Proceed by induction,
letting ptq be the collection of types whose reducibility we interrogate.

• If t is a variable, then we only see REDUirR̄{¯
Xs, so ptq “ tUiu.

• If t “ uv is an abstraction, then we prove t P REDT rR̄{
¯
Xs by appealing to the fact that

u and v satisfy their respective reducibility predicates, meaning ptq “ puq Y pvq Y tT u.

• When t “ λyV .w, we quantify over different substitutions v{y, but we only appeal to
membership of REDW rR̄{

¯
Xs, so ptq “ pwq Y tT u.

• For t “ t1V , with t1 of type ΠY.T 1, we apply Lemma 3.8 (via Lemma 3.10), but only to
the specific substitution T “ T 1rV {Y s. It doesn’t go through slickly in our notation, but
the set ptq extends pt1q by tT u, as well as the types required for Lemma 3.8. These are
simply the subtypes of T 1, with and without our specific substitution.

• Examining Lemma 3.11, we see that when t “ ΠY.w, ptq “ pwq Y tT u.

At each stage, we take the union of finite sets, so ptq is finite for all terms t. This, I think,
justifies the claim that we can prove strong normalisation for a given term.

References

[Gal90] Jean Gallier. On girards candidats de reductibilite. 01 1990.

[Gir87] J.Y. Girard. Proof Theory and Logical Complexity. Number v. 1 in Proof Theory and
Logical Complexity. Elsevier, 1987.

[Gir11] J. Girard. The blind spot: Lectures on logic. 2011.

[GLT93] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types. Cambridge Univ.
Press, 1993.

[Sel08] Peter Selinger. Lecture notes on the lambda calculus. CoRR, abs/0804.3434, 2008.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal of
Symbolic Logic, 32(2):198–212, 1967.

10

	Introduction
	Church-Rosser Theorem
	Strong Normalisation
	Preamble
	Reducibility candidates
	Reducibility with parameters
	Reducibility

	Second-order Arithmetic
	Assumptions
	What we can't do
	What we can do

