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Notes

The world probably doesn’t need another English translation of GAGA, but I need an activity so here
we are. This will, most likely, end up relatively rough, but should be (I hope!) correct. As such, do let
me know if anything is unclear or incorrect. I am working from the French available here [Ser56].

I will give the references as in the original, supplemented occaisionally by a modern treatment, if
I have come across one. Principally this will be from the excellent [GLS07], on the theory of analytic
spaces. The principal references in the original are to Cartan’s Séminaire E.N.S., all volumes of which
are available here.

After this section I will put anything that is me (ie: not Serre) in a footnote.

Introduction

Let X be a projective algebraic variety, defined over the complex numbers. We can study X from two
points of view: the algebraic point of view, where the objects of interest are the local rings at points of
X, and rational or regular mappings from X to other varieties; and the analytic point of view (sometimes
called “transcendent”) in which holomorphic functions on X play the principal role. We know that the
second point of view is particularly fertile if X is non-singular, allowing us to apply techniques from the
theory of Kähler manifolds.

For a number of questions, the two points of view give us essentially equivalent results, although the
methods are different. For example, we know that globally defined holomorphic differential forms are
exactly those rational differential forms of the first kind (supposing still that X is non-singular). Chow’s
theorem is another example of the same type: all closed analytic subspaces of X are algebraic varieties.

The principal goal of this paper is to understand this equivalence in terms of coherent sheaves. More
precisely, we demonstrate that coherent algebraic sheaves correspond bijectively to coherent analytic
sheaves, and that the equivalence (??) between the two categories of sheaves gives us an isomorphism
of their cohomology groups (see Section 3.4 for the statements). We will indicate diverse applications of
these results, notably to the comparison between analytic and algebraic fibre bundles.

The first two sections are preliminaries. In Section 1 we give the definition and principal properties of
analytic spaces. The definition we adopt was proposed by Cartan in [Car], thought we drop his restriction
to normal varieties. A similar definition is used by Chow in his, as yet unpublished, work on this subject.
In Section 2, we associate to any algebraic variety X the structure of an analytic space, and derive its
elementary properties. Without doubt the most important of these is that, if Ox (resp. Hx) denotes the
local ring (resp. ring of germs of holomorphic functions) of X at a point x, then the rings Ox and Hx

form a flat pair1.

1Two rings A ⊂ B are called a flat pair if B/A is a flat A-module.
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Section 3 contains the proofs of the results alluded to above. These proofs rest principally on the
theory of coherent algebraic sheaves developed in [Ser55b], and on Cartan’s theorems A and B [Car,
1953-4, §18-19]. To be complete, we will reproduce the proofs of these theorems.

Section 4 is dedicated to applications: invariance of Betti numbers by automorphisms of C, Chow’s
theorem, and comparison of the analytic and algebraic fibre bundles of the structure group of a given
algebraic group. Our results on the latter question are incomplete: among semi-simple groups we have
only treated symplectic and unimodular (linear) groups.

Finally, we include in Appendix A certain results on local rings which could not be found explicitly
in the literature.

1 Analytic spaces

1.1 Analytic subsets of affine space

Let n ≥ 0 be an integer, and give Cn its usual topology. For a subset U ⊂ Cn, we say that U is analytic
if, for every x ∈ U , there are functions f1, . . . , fk holomorphic on an open neighbourhood W of x, so that:

U ∩W = {z ∈ W | f1(z) = · · · = fk(z) = 0}.

Any analytic subset is locally closed in Cn (the intersection of an open and a closed set), and as such
locally compact with the induced topology.

We now assign a sheaf to the topological space U . For any topological space X, let C(X) be the sheaf
of germs of complex-valued functions on X. If H denotes the sheaf holomorphic functions on Cn, then
H is a subsheaf of C(Cn). Given a point x of U , we have a restriction homomorphism:

ϵx : C(Cn)x −→ C(U)x.

The image of Hx under ϵx is a sub-ring Hx,U of C(U)x; and the rings Hx,U form a sub-sheaf HU

of C(U), which we call the sheaf of holomorphic functions on U . We denote by Ax(U) the kernel of
ϵx : Hx → Hx,U . By definition:

Ax(U) = {f ∈ Hx | f |W∩U = 0, x ∈ W open}.

We frequently identify Hx,U with the quotient Hx/Ax(U).
With a topology and a sheaf of functions, we can define the notion of a holomorphic mapping (cf [Car,

exp. 6] and [Ser55b, 32]).
Let U and V be analytic subsets of Cr and Cs respectively. A mapping φ : U → V is called

holomorphic if it is continuous, and if for every f ∈ Hφ(x),V , we have f ◦φ ∈ Hx,U . This is equivalent to
each of the s components of φ being holomorphic functions of x ∈ U .

The composite of two holomorphic mappings is holomorphic. A bijection φ : U → V is called an
analytic isomorphism (or simply an isomorphism) if φ and φ−1 are holomorphic; this is equivalent to the
statement that φ is a homeomorphism U → V which induces an isomorphism between the sheaves HU

and HV .
If U and U ′ are two analytic subsets of Cr and Cr′ , the product U ×U ′ is an analytic subset of Cr+r′ .

The properties laid out in [Ser55b, 33] carry over to this situation, replacing everywhere “locally closed
subset” with “analytic subset”, and “regular function” with “holomorphic function”. In particular, if
φ : U → V and φ′ : U ′ → V ′ are analytic isomorphisms, then so is

φ× φ′ : U × U ′ −→ V × V ′.

However, unlike the algebraic case, the topology of U × U ′ is the product of the topologies of U and
U ′.
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1.2 The notion of analytic space

Definition 1. An analytic space is a topological space X, and a subsheaf HX of C(X) satisfying the
following axioms.

(H1) There is an open cover {Vi} of X, such that Vi — with its induced topology and sheaf — is
isomorphic to an analytic subset Ui of some affine space.

(H2) The topology on X is Hausdorff.

The definitions of the previous subsection are local, so apply equally to analytic spaces. As such,
we refer to HX as the sheaf of holomorphic functions on the analytic space X. Defining holomorphic
mappings φ : X → Y in the same way, we obtain a family of morphisms2 (in the sense of Bourbaki) for
the structure of an analytic space.

If V is an open subset of an analytic space X, a chart on V is an isomorphism from V to some analytic
subset U . The axiom (H2) indicates that it is possible to recover X from the open sets possessing charts.
A subset Y of X is said to be analytic if, for every chart φ : V → U the image φ(Y ∩ V ) is an analytic
subset of U . Any such Y is locally closed in X, and can be given the structure of an analytic space in the
natural way. This structure is said to be induced from that of X (cf [Ser55b, 35] for the algebraic case).
Similarly, there is a natural analytic structure on the product X ×X ′ of two analytic spaces, using the
product of the charts on X and X ′. Given this structure, X ×X ′ is called the product of the analytic
spaces X ×X ′, and one observes (as above) that the topology is the product of the topologies on X and
X ′.

We leave the reader to transpose to analytic spaces the other results of [Ser55b, 34-35].

1.3 Analytic sheaves

The definition of analytic sheaves given in [Car, 1951-2 exp. 15] extends to the case of an analytic space
X: an analytic sheaf on X is simply a sheaf of HX -modules.

Let Y be a closed analytic subset of X, and x ∈ X a point. Denote be Ax(Y ) the set of f ∈ Hx,X

whose restriction to Y vanishes in a neighbourhood of x. The Ax(Y ) form a sheaf of ideals A(Y ) for the
sheaf HX ; that is, A(Y ) is an analytic sheaf. The quotient sheaf HX/A(Y ) vanishes outside Y , and its
restriction to Y is nothing but HY , with the usual definition of the induced structure.

Proposition 1. (a) HX is a coherent sheaf of rings.
(b) If Y is a closed analytic subset of X, the sheaf A(Y ) is coherent.3

In the case that X is an open subset of Cn, these results are due to Oka and Cartan — see [Car50,
Theorems 1 and 2] and [Car, 1951-2, exp. 15-16]. The general case procedes immediately; the question is
local, so one can assume that X is a closed analytic subset of some open U ⊂ Cn. In this case, we have
HX = HU/A(X). In light of the previous, HU is a coherent sheaf of rings, and A(X) is a coherent sheaf
of ideals; the result (a) follows by [Ser55b, Theorem 3]. The second assertion is proven in the same way.

Other examples of coherent analytic sheaves include the sheaf of sections to a vector bundle, and the
sheaf of automorphic functions [Car, 1953-4, exp. 20].

1.4 Neighbourhood of a point in an analytic space

Let X be an analytic space, x a point of X, and Hx the ring of germs at x. This ring is a C-algebra which
has a unique maximal ideal m consisting of those functions vanishing at x, and the field Hx/m is C — in
other words, Hx is a local algebra over C. If X = Cn, then Hx = C{z1, . . . , zn}, the algebra of convergent
series in n variables; in the general case, Hx is isomorphic to a quotient algebra C{z1, . . . , zn}/a, since

2I think this means a category?
3In [GLS07], the Oka coherence theorem (a) is Theorem 1.63, and (b) is Theorem 1.75.
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X is locally isomorphic to an analytic subset of Cn. As a result, the ring Hx is noetherian4, it is also an
analytic ring, in the sense of [Car, 1953-4, exp. 8].

We see easily that the knowledge of Hx determines X in a neighbourhood of x [Car, loc. cit.]. In
particular, if Hx is isomorphic to C{z1, . . . , zn} then X is locally isomorphic to Cn; this condition is
equivalent to requiring that Hx is a regular local ring of dimension n5 (for the theory of local rings, see
[Sam53a]). In this case, the point x is called smooth of dimension n; if every point of X is smooth, X is
called an analytic variety.

Returning to the general case, the ring Hx has no nilpotents other than 0, and as such [Sam53b,
Chapter 4 §2]

{0} =
⋂

pi,

where pi runs over the minimal prime ideals of Hx. If we denote by Xi the irreducible components of X
containing x, we have pi = Ax(Xi), and H)x/pi = Hx,Xi

6. This essentially reduces the local study of X
to that of Xi; for example, the dimension (analytic — that is to say half the topological dimension) of
X at x is the largest of the dimensions of the Xi

7. One observes that this dimension coincides with the
dimension (in the Krull sense) of the local ring Hx. To demonstrate this, it suffices to check dimensions
in the case that X is irreducible at x (that Hx is an integral domain) — in this case, if r is the analytic
dimension of X at x, we know [Car, 1953-4 exp. 8] that Hx is a finite extension of C{z1, . . . , zr}. Since
C{z1, . . . , zr} has completion CJz1, . . . , zrK, the same is true of Hx.

2 The analytic space associated to an algebraic variety

In what follows, we consider algebraic varieties over C. Such a variety is given two topologies: the “usual”
topology, and the Zariski topology. To avoid confusion, we will prefix notions relative to the latter by
the letter Z; for example, “Z-open” is short for “open in the Zariski topology”.

2.1 Defenition of the analytic space associated to an algebraic variety

We will give every algebraic variety8 the structure of an analytic space, which is possible by the following
lemma.

Lemma 1. a) The Z-topology on Cn is less fine that the usual topology.
b) Every Z-locally closed subset of Cn is analytic.
c) If U and U ′ are two Z-locally closed subsets of Cn and Cn′

, and f : U → U ′ is a regular mapping,
then f is holomorphic.

d) Under the hypotheses of c), if we suppose in addition that f is a biregular isomorphism, then f is
an analytic isomorphism.

By definition, a Z-closed subset of Cn is defined by the vanishing of a certain number of polynomials;
since a polynomial is continuous in the usual topology (resp. holomorphic), one deduces a) (resp. b)).
To demonstrate c), we may suppose that U ′ = C; then we must show that every regular function on U is
holomorphic, which follows from the fact that a polynomial is a holomorphic function. Finally, d) follows
immediately from c), applied to f−1.

4[GLS07, Theorem 1.15].
5[GLS07, Proposition 1.48].
6See [GLS07, Proposition 1.51], and following exercises
7That there is a finite number of irreducible components follows from the fact that Hx is noetherian — see [GLS07,

§B.1].
8In “giving X the structure of an analytic space”, we mean defining this structure on the underlying set (in a way natural

w.r.t. the algebraic structure). It should be noted that to do this for a variety in the scheme sense, one would (I think)
need to apply the construction to the set of closed points. See [Har00, Proposition 2.6].
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Now let X be an algebraic variety over C (in the sense of [Ser55b, 34], so not necessarily irreducible).
Let V be a Z-open subset of X with an algebraic chart

φ : V −→ U,

onto a Z-locally closed subset U of some affine space. According to Lemma 1 b), U can be given the
structure of an analytic space.

Proposition 2. There exists on X the structure of an analytic space, which is unique if we require that,
for every chart φ : V → U , the Z-open set V is open, and φ is an analytic isomorphism from V (with the
induced analytic structure) onto U (with the analytic structure from Section 1.1).

(More briefly: every algebraic chart is an analytic chart.)
Uniqueness is evident, as we can recover X from the Z-open subsets and their charts. To prove

existence, let φ : V → U be a chart, and transport the analytic structure on V to U via φ−1. If
φ′ : V ′ → U ′ is another chart, the analytic structures on V ∩ V ′ induced by V and V ′ are identical, by
Lemma 1 d); in addition, V ∩ V ′ is open in V and in V ′, by Lemma 1 a). By glueing, we obtain on
X a topology and a sheaf HX which satisfies the axiom (H1). To verify that our new topology on X is
Hausdorff, we use axiom (VA2’) of [Ser55b, 34]9. This axiom implies that the diagonal of X is Z-closed,
so a fortiori it is closed.

Remark. One can define directly the analytic structure on X without reference to the charts φ : V → U .
First, one defines the topology to be the finest such that regular functions on Z-open subsets of X are
continuous. Then, Hx,X is the analytic subring of C(X)x generated by Ox,X (in the sense of [Car, 1953-4,
exp. 8]). We leave to the reader to verify the equivalence of the two definitions.

In the following, we denote by Xh the set X with the analytic structure we have defined. The topology
on Xh is finer than the topology on X; as Xh can be recovered from a finite number of open subsets
with charts10, Xh is a locally compact space which is countable at infinity.

The following properties are immediate from the definition of Xh:
If X and Y are two algebraic varieties, we have (X×Y )h = Xh×Y h. If Y is a Z-locally closed subset

of X, then Y h is an analytic subset of Xh; moreover, the induced analytic structure on Y coincides with
the structure on Y h. Finally, if f : X → Y is a regular function between algebraic varieties, f is also a
holomorphic mapping from Xh to Y h.

2.2 Relations between the local ring at a point, and the ring of holomorphic
functions at that point

Let X be an algebraic variety, and x a point of X. We now compare the local ring Ox of regular functions
at x with the local ring Hx of germs of holomorphic functions at x11.

As every regular function is holomorphic, each f ∈ Ox defines a germ of a holomorphic function at
x, which we denote by θ(f). The map θ : Ox → Hx is a homomorphism, and maps the maximal ideal of

Ox into that of Hx. By continuity, it extends to a homomorphism θ̂ : Ôx → Ĥx between the completions
of Ox and Hx (see Appendix A.4).

Proposition 3. The homomorphism θ̂ : Ôx → Ĥx is bijective.

We will demonstrate this proposition concurrently with another result. Let Y be a Z-locally closed
subset of X and Jx(Y ) (or Jx(Y,X) if it is necessary to specify X) the ideal of Ox formed by functions
vanishing on Y in a Z-neighbourhood of x. The image of Jx(Y ) under θ is evidently contained in the
ideal Ax(Y ) ⊂ Hx defined in Section 1.3.

9For charts φi : Ui → Vi and φj : Uj → Vj , define Tij = {(φi(x), φj(x) | x ∈ Ui ∩ Uj}. The axiom (VA2’) requires that
Tij is Z-closed in Vi × Vj , which is equivalent to ∆(X) ⊂ X ×X being Z-closed (VA2).

10In (VA1) of [Ser55b, 34] the covering of X by algebraic charts is required to be finite.
11That is, the stalks of the structure sheaves of X and Xh.
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Proposition 4. The ideal Ax(Y ) is generated by θ(Jx(Y )).

We demonstrate these propositions first in the case where X = Cn. The former is trivial, as Ôx =
Ĥx = CJz1, . . . , znK, the formal power series ring in n indeterminants. For Proposition 4, let a ⊂ Hx be
the ideal generated by Jx(Y ). Every ideal of Hx defines a germ of an analytic subset of X at x (see
[Car50, 3] or [Car, 1953-4, exp. 6, p.6]); it is clear that the germ defined by a is Y . If f is an element of
Ax(Y ), by virtue of the Nullstellensatz12 (which holds for ideals of Hx: [Rü33, p. 278], or [Car, 1951-2,
exp. 14, p.3] and [Car, 1953-4, exp. 8, p.9]) there is an integer r ≥ 0 such that fr ∈ a. A fortiori, we
have

fr ∈ a · Ĥx = Jx(Y ) · Ĥx = Jx(Y ) · Ôx.

The ideal Jx(Y ) is the intersection of the prime ideals corresponding to the irreducible components
of Y at x. By a theorem of Chevalley (see [Sam53a, p.40] and [Sam55, p.67]), the same is true of
Jx(Y ) · Ôx; as such fr ∈ Jx(Y ) · Ôx implies that f ∈ Jx(Y ) · Ôx. As Hx is a noetherian local ring, we
have a · Ĥx ∩Hx = a (see [Sam53b, Chapter 4]). As such, f ∈ a and Proposition 4 for that X = Cn.

Moving to the general case. The question is local, so we may assume that X is a subvariety of some
affine space, which we denote by U . By definition, we have

Ox = Ox,U/Jx(X,U) and Hx = Hx,U/Ax(X,U).

The mapping θ : Ox → Hx is induced on the quotient by θ : Ox,U → Hx,U , and by the previous we

know that θ̂ : Ôx,U → Ĥx,U is bijective, and that Ax(X,U) = θ(Jx(X,U)) · Hx,U . Proposition 3 follows
immediately, by Proposition 23. Proposition 4 also follows from the above, since Ax(Y ) is the image of
Ax(Y, U) in the quotient, and the former is generated by θ(Jx(Y,U)).

Proposition 3 shows, in particular, that θ : Ox → Hx is injective, so we may identify Ox with the
subring θ(Ox) of Hx. Using this identification, we have (using Proposition 22) that:

Corollary 1. The rings (Ox,Hx) form a flat pair.

Corollary 2. The rings Ox and Hx have the same dimension.

We know that the dimension of a noetherian local ring is equal to that of its completion (see [Sam53a,
p.26]).

Taking as given the results of Section 1.4, we obtain the following result (supposing that X is irre-
ducible to simplify the statement):

Corollary 3. If X is an irreducible algebraic variety of dimension r, the analytic space Xh has analytic
dimension r at all of its points.

2.3 Relations between the usual and Zariski topologies on an algebraic vari-
ety

Proposition 5. Let X be an algebraic variety, and U a subset of X. If U is Z-open and Z-dense in X,
U is dense in X.

Let Y = X \ U , which is a Z-closed subset of X. If there is a neighbourhood of x disjoint from U (ie
contained in Y ), then Ax(Y ) = 0, with the notations of Section 2.2. Since θ(Jx(Y )) ⊂ Ax(Y ), and θ is
injective (Proposition 3), we have that Jx(Y ) = 0. This indicates that Y = X in a Z-neighbourhood of
X, which contradicts the hypothesis that U is Z-dense in X.

Remark. One sees easily that Proposition 5 is equivalent to the fact that θ : Ox → Hx is injective, a far
more elementary fact than Proposition 3. One could demonstrate this fact, for example, by reduction to
the case of a curve.

12Called the Hilbert-Rückert Nullstellensatz in [GLS07, Theorem 1.72].
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We now give two simple applications of Proposition 5.

Proposition 6. For an algebraic variety X to be complete, it is necessary and sufficient that it be
compact.

We appeal first to a result of Chow (see [Cho56] or [Ser55a, 4]): for every algebraic variety X, there
is a projective variety Y , a Z-open and Z-dense subset U of Y , and a surjective regular map f : U → X
whose graph T is Z-closed in X × Y . We have U = Y if and only if X is complete.

Suppose first that X is complete, so that X = f(Y ); since every projective variety is compact in
the usual topology, we conclude that X is compact. Conversely, if X is compact, the same is true of
T ⊂ X × Y 13. As U is the projection of T onto Y , U is closed in Y . By Proposition 5, U = Y , as
required.

The following lemma is essentially due to Chevalley.

Lemma 2. Let f : X → Y be a regular mapping between algebraic varieties, and suppose that f(X) is
Z-dense in Y . Then, there exists U ⊂ f(X) Z-open and Z-dense in Y .

In the case where X and Y are irreducible, the result is well-known: see [Car, 1955-6, exp. 3] or
[Sam55, p.15], for example. We will reduce the general case to this situation. Let Xi, i ∈ I, be the
irreducible componenets of X, and Yi the Z-closure of f(Xi) in Y ; the Yi are irreducible, and Y = ∪Yi.
As such, there is a subset J ⊂ I so that Yj , j ∈ J are the irreducible components of Y . By the result
mentioned, for each j ∈ J , there is a subset Uj ⊂ f(Xj) which Z-open and Z-dense in Yj . Shrinking Uj ,
we may assume that Uj does not meet Yk for j ̸= k ∈ J . Setting U =

⋃
j∈J Uj , we find a subset of Y

with the required properties.

Proposition 7. If f : X → Y is a regular mapping between algebraic varieties, the closure and the
Z-closure of f(X) in Y coincide.

Let T be the Z-closure of f(X) in Y . Applying Lemma 2 to f : X → T , we can find U ⊂ f(X) which
is Z-open and Z-dense in T . By Proposition 5, U is dense in T , so a fortiori the same is true of f(X).
This shows that T contains the closure of f(X), and the opposite inclusion is evident, so the statement
is proven.

2.4 An analytic criterion for regularity

We know that every regular function is holomorphic. The following proposition (which we will extend in
Section 4.1) indicates when the converse is true.

Proposition 8. Let X and Y be algebraic varieties, and f : X → Y a holomorphic mapping. If the
graph T of f is a Z-locally closed subset (ie an algebraic subvariety) of X × Y , the function f is regular.

Let p = prX be the canonical projection of T onto the first factor X in X × Y . The function p is
regular, bijective, and its inverse function x 7→ (x, f(x)) is holomorphic by hypothesis. Therefore, p is an
analytic isomorphism, so it suffices to show that p is a biregular isomorphism (so that f = prY ◦ p−1).
This follows from the following proposition.

Proposition 9. Let T and X be algebraic varieties, and p : T → X a regular bijective map. If p is an
analytic isomorphism of T onto X, it is also a biregular isomorphism.

We show first that p is a homeomorphism for the Zariski topologies on T and X. Let F be a Z-closed
subset of T ; since p is an analytic isomorphism, it is a fortiori a homeomorphism, so p(F ) is closed in X.
Applying Proposition 7 to p : F → X, we conclude that p(F ) is Z-closed in X, which demonstrates our
assertion.

13As it is closed and X × Y is compact.
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We now show that p transforms the sheaf OX to OT . More precisely, if t ∈ T is a point, and x = p(t),
p defines a homomorphism

p∗ : Ox,X −→ Ot,T ,

and we need to show that p∗ is bijective14.
Since p is a Z-homeomorphism, p∗ is injective, which permits us to identify Ox,X with a subring of

Ot,T . To simplify notation, write A = Ox,X and A′ = Ot,T , so that A ⊂ A′. Similarly, write B (resp.
B′) for the ring Hx,X (resp. Ht,T ), and we consider A and A′ as embedded in B and B′, respectively, by
Proposition 3. The hypothesis that p is an analytic isomorphism indicates that B = B′.

Let Xi be the irreducible components of X at x; each Xi determines a prime ideal pi = Jx(Xi) of
A, and the (local) quotient ring Ai = A/pi is exactly the local ring at x of Xi. Each field of fractions
Ki of Ai is the field of rational functions on the irreducible variety Xi. The ideals pi are evidently the
minimal prime ideals of A, and we have that 0 =

⋂
pi. The set S of elements of A not contained in any

pi is mutiplicatively stable (it is easy to see this is the set of regular elements of A). The localisation AS
15 is equal to the direct product of the Ki (see Lemma 3 following).

Let Ti = p−1(Xi); since p is a Z-homeomorphism, the Ti are the irreducible components of T at t, and
define prime ideals p′i of A

′. We write again A′
i = A′/p′i, and K ′

i for the field of fractions of A′
i; again the

ring A′
S′ is the direct product of the K ′

i. Note that p′i ∩A = p′i, where Ai ⊂ A′
i, Ki ⊂ K ′

i and AS ⊂ A′
S′ .

We first show that Ki = K ′
i, so that p defines a birational correspondence between Ti and Xi. Since

p : Ti → Xi is a Z-homeomorphism, Ti and Xi have the same dimension, so the fields Ki and K ′
i have the

same transcendence degree over C. If we set ni = [K ′
i : Ki], we know

16 that there exists some non-empty
Z-open subset Ui of Xi, so that the inverse image of each point of Ui consists of exactly ni points of Ti.
Since p is bijective ni = 1 and Ki = K ′

i.
Since AS (resp. A′

S′) is the direct product of the Ki (resp. K ′
i), we have that AS = A′

S′ . Now let
f ′ ∈ A′; by the previous, we have f ′ ∈ AS — in other words, there exist g ∈ A and s ∈ S so that g = sf ′.
Then g ∈ sA′, so g ∈ sB′ = sB. But by Corollary 1, the pair (A,B) is flat, so we have sB ∩ A = sA by
Proposition 16. This demonstrates that g ∈ sA, so there is f ∈ A so that g = sf , ie s(f − f ′) = 0. Since
s is a non-zero-divisor in A, we have f = f ′ so A = A′.

We used the following lemma, which we demonstrate now.

Lemma 3. Let A be a commutative ring, in which the zero ideal is the intersection of a finite number of
minimal prime ideals pi. Let Ki be the field of fractions of A/pi, and S the set of elements not belonging
to any pi. The ring of fractions AS is isomorphic to the direct product of the Ki.

We know that the prime ideals of AS are in bijection with those prime ideals of A which are disjoint
from S (see [Sam53b, Chapter 4, §3]). As such, writing mi = piAS , the mi are the only prime ideals
of AS . In particular, they are minimal, and evidently distinct, since mi ∩ A = pi ([Sam53b, loc. cit.]).
In addition, the field AS/mi is generated by A/pi, so coincides with Ki. It remains to show that the
canonical homomorphism

φ : AS −→
∏

AS/mi =
∏

Ki

is bijective.
Firstly, since

⋂
pi = 0, we have that

⋂
mi = 0, which shows that φ is injective. Denote by bi the

product (in the ring AS) of the ideals mj , j ̸= i, and write b =
∑

bi. The ideal b is the whole ring, as it
is contained in none of the mi. Therefore, there exist elements xi ∈ bi so that

∑
xi = 1. We have:

xi ≡ 1 mod mi and xi ≡ 0 mod mj , j ̸= i,

which shows that φ(AS) contains the elements (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of
∏

Ki. Since these elements
generate the As-module

∏
Ki, this shows that φ is bijective, which finishes the proof.

14Serre credits the following proof to Samuel.
15Notation for S−1A.
16Serre: this is a classical result, and easy to demonstrate, on birational maps. [Sam55, p. 16] has a slightly weaker

result, which suffices for our purposes.

8



3 GAGA theorems

3.1 The analytic sheaf associated to an algebraic sheaf

Let X be an algebraic variety, and Xh the analytic space associated to it in Section 2.1. If F is a sheaf
on X, we give the set F a new topology making it a sheaf on Xh. This topology is defined in the
following way: If π : F → X denotes the projection of F onto X, one embeds F into Xh×F by the map
f 7→ (π(f), f). The topology on F in question is that induced from that of Xh × F . One verifies that
this gives the set F the structure of a sheaf on Xh, which we denote by F ′. For every x ∈ X, we have
Fx = F ′

x; the sheaves F and F ′ only differ in their topology (F ′ is exactly the inverse image sheaf of F
under the continuous map Xh → X).

The preceding discussion applies in particular to the sheaf O of local rings on X; Proposition 3 allows
us to identify the sheaf O′ obtained in this way with a subsheaf of H, the sheaf of germs of holomorphic
functions on Xh.

Definition 2. Let F be an algebraic sheaf on X. The sheaf Fh, called the analytic sheaf associated to
F , is defined by the formula

Fh = F ′ ⊗H,

where the tensor product is taken over the sheaf of rings O′.

(In other words, Fh is obtained from F ′ by extension of scalars along O′ → H.)
The sheaf Fh is a sheaf of H-modules, that is to say an analytic sheaf. The injection O′ → H defines

a canonical homomorphism α : F ′ → Fh.
Every algebraic homomorphism (that is to say, O-linear)

φ : F −→ G

defines, by extension of scalars, an analytic homomorphism

φh : Fh −→ Gh.

As such, Fh is a covariant functor of F .

Proposition 10. a) The functor (−)h is exact.
b) For every algebraic sheaf F , the homomorphism α : F ′ → Fh is injective.
c) If F is a coherent algebraic sheaf, Fh is a coherent analytic sheaf.

If F1 → F2 → F3 is an exact sequence, the same is evidently true of F ′
1 → F ′

2 → F ′
3. Therefore, the

sequence:
F ′

1 ⊗H → F ′
2 ⊗H → F ′

3 ⊗H

is also exact, by Corollary 1, which demonstrates a). The assertion b) follows from the same result.
To demonstrate c), remark first that we have Oh = H; then, if F is a coherent algebraic sheaf, and if

x is a point of X, we can find an exact sequence:

Oq −→ Op −→ F −→ 0,

valid in a Z-neighbourhood U of x. By a), we have an exact sequence

Hq −→ Hp −→ Fh −→ 0,

also valid on U . Since U is a neighbourhood of x ∈ Xh, and since the sheaf H is coherent (Proposition 1),
this shows that Fh is coherent [Ser55b, 15].

The previous proposition demonstrates that, in particular, if J is a sheaf of ideals of O, the sheaf J h

is exactly the sheaf of ideals of H generated by the elements of J .
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3.2 Extension of a sheaf

Let Y be a Z-closed subvariety of the algebraic variety X, and let F be a coherent algebraic sheaf on Y .
If we denote by FX the sheaf obtained by extension by zero on X \Y (see [Ser55b, 5]), we know that FX

is a coherent algebraic sheaf on X, and the sheaf (FX)h is well-defined; it is a coherent analytic sheaf on
Xh. On the other hand, the sheaf Fh is a coherent analytic sheaf on Y h, which we can extend by zero
on Xh \ Y h, obtaining similarly a new sheaf (Fh)X . We have:

Proposition 11. The sheaves (Fh)X and (FX)h are canonically isomorphic.

The two sheaves in questions are zero outside Y h, so it suffices to show that their restrictions to Y h

are isomorphic.
Let x be a point of Y . Write, to simplify the notation:

A = Ox,X , A′ = Ox,Y , B = Hx,X , B′ = Hx,Y , E = Fx.

Then we have17:
(Fh)Xx = E ⊗A′ B′ and (FX)hx = E ⊗A B.

The ring A′ is a quotient of A by an ideal a, and, by Proposition 4, we have B′ = B/aB = B ⊗A A′. By
the associativity of the tensor product, we obtain an isomorphism:

θx : E ⊗A′ B′ = E ⊗A′ A′ ⊗A B −→ E ⊗A B,

which varies continuously with x, as one sees easily; the proposition follows.
The proposition may be summed up as saying that the functor Fh is compatible with the usual

identification of F with FX .

3.3 Induced homomorphisms on cohomology

We use the notations of Section 3.1. Let X be an algebraic variety, F an algebraic sheaf on X, and Fh

the analytic sheaf associated to F . If U is a Z-open subset of X, and s is a section of F on U , we can
consider s as a section s′ of F ′ on the open Uh ⊂ Xh. Then, α(s′) = s′ ⊗ 1 is a section of Fh = F ′ ⊗H
on Uh. The function s 7→ α(s′) is a homomorphism

ϵ : Γ(U,F) −→ Γ(Uh,Fh).

Now let U = {Ui} be a finite Z-open covering of X; the Uh
i form a finite open covering of Xh, which

we denote Uh. For every collection of indices i0, . . . , iq, we have — using the previous — a canonical
homomorphism:

ϵ : Γ(Ui0 ∩ · · · ∩ Ui1 ,F) −→ Γ(Uh
i0 ∩ · · · ∩ Uh

i1 ,F
h),

which gives us a homomorphism
ϵ : C(U,F) −→ C(Uh,Fh),

with the notations of [Ser55b, 18].
This homomorphism commutes with the coboundary d, so defines, by passage to cohomology, new

homomorphisms:
ϵ : Hq(U,F) −→ Hq(Uh,Fh).

Finally, by passage to the inductive limit on U, we obtain the induced homomorphisms on cohomology
groups

ϵ : Hq(X,F) −→ Hq(Xh,Fh).

17There is, I think, a typo in the following equation in the original. There it reads (Fh)Xx = E ⊗A B′, which doesn’t
match the subsequent equation.
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These homomorphisms enjoy the usual functorial properties; they commute with homomorphisms
φ : F → G; if we have an exact sequence of algebraic sheaves:

0 −→ A −→ B −→ C −→ 0,

where the sheaf A is coherent, the diagram:

Hq(X, C) Hq+1(X,A)

Hq(X, C) Hq+1(X,A)

δ

ϵ ϵ

δ

is commutative. One can see this, for example, by taking for U covers by affine opens (see [Ser55b]).

3.4 Projective Varieties, statements of the Theorems

Suppose that X is a projective variety, that is, a Z-closed sub-variety of some projective space CP r.
Then, we have the following theorems, which we will demonstrate in the following subsections.

Theorem 1. For every coherent algebraic sheaf F on X, and for every integer q ≥ 0, the homomorphism

ϵ : Hq(X,F) −→ Hq(Xh,Fh),

defined in Section 3.3, is bijective.

In particular, for q = 0 we obtain an isomorphism of Γ(X,F) onto Γ(Xh,Fh).

Theorem 2. If F and G are two coherent algebraic sheaves onX, every analytic homomorphism Fh → Gh

arises from a unique algebraic homomorphism F → G.

Theorem 3. For every coherent analytic sheave M on Xh, there is a coherent algebraic sheaf F on X
such that Fh is isomorphic to M. In addition, this property determines F uniquely up to isomorphism.

Remark. 1. These three theorems signify that the theory of coherent analytic sheaves on Xh coincides
essentially with the theory of coherent algebraic sheaves on X. Note that they are given for a projective
variety X, but are exactly the same for an affine variety.

2. We can factorise ϵ as:

Hq(X,F) −→ Hq(Xh,F ′) −→ Hq(Xh,Fh).

One might ask where Hq(X,F) → Hq(Xh,F ′) is bijective. The response is negative. If this homo-
morphism were bijective for every coherent algebraic sheaf F , it would also be so for the constant sheaf
K = C(X) of rational functions on X (supposed to be irreducible), since this sheaf is a union of coherent
sheaves (compare with [Ser55a, §2]). In this case, Hq(X,K) = 0 for every q > 0, but Hq(Xh,K) is a
K-vector space with dimension equal to the qth Betti number of Xh.

3.5 Proof of Theorem 1

Let us suppose that X is embedded in CP r; if we identify F with the sheaf obtained by extending by
zero outside X, we have [Ser55b, 26] that:

Hq(X,F) = Hq(CP r,F) and Hq(Xh,Fh) = Hq((CP r)h,Fh),

where the notation Fh is justified by Proposition 11. One sees that it suffices to prove that

ϵ : Hq(CP r,F) −→ Hq((CP r)h,Fh),

is bijective. In other words, we reduce to the case that X = CP r.
First we establish two lemmas.
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Lemma 4. Theorem 1 is true for the sheaf O.

If q = 0, H0(X,O) andH0(Xh,Oh) are both reduced to constants. If q > 0, we know thatHq(X,O) =
0 by [Ser55b, 65, Proposition 8]. On the other hand, by a theorem of Dolbeaut [Dol53], Hq(Xh,Oh) is
isomorphic to the (0, q)-type cohomology of the projective space X, which also vanishes.18

Lemma 5. Theorem 1 is true for the sheaves O(n).

For the definition of O(n), see [Ser55b, 16, or 54].
We reason by induction on r = dimX, the case where r = 0 being trivial. Let t be a linear form

which is not identically zero, defined by homogenous coordinates t0, . . . , tr, and let E be the hyperplance
defined by the equation t = 0. We have an exact sequence:

0 −→ O(−1) −→ O −→ OE −→ 0,

where O → OE is given by restriction, and O(−1) → O by multiplication by t (see [Ser55b, 81]). From
this, we deduce an exact sequence, valid for all n ∈ Z:

0 −→ O(n− 1) −→ O(n) −→ OE(n) −→ 0.

By Section 3.3, we have a commutative diagram:

. . . Hq(X,O(n− 1)) Hq(X,O(n)) Hq(X,OE(n− 1)) Hq+1(X,O(n− 1)) . . .

. . . Hq(Xh,Oh(n− 1)) Hq(Xh,Oh(n)) Hq(Xh,Oh
E(n− 1)) Hq+1(Xh,Oh(n− 1)) . . .

ϵ ϵ ϵ ϵ

By the inductive hypothesis, the homomorphism

ϵ : Hq(E,OE) −→ Hq(Eh,OE(n)
h)

is bijective for all q ≥ 0 and n ∈ Z. Applying the Five lemma, we see that if Theorem 1 is true for O(n),
it is true for O(n− 1), and vice-versa. Since it is true for n = 0 by Lemma 4, it is true for every n.

We now proceed to the proof of Theorem 1: we reason by descending induction on q. SinceHq(X,F) =
Hq(Xh,Fh) = 0 for q > 2r, the theorem is trivial in that case. By [Ser55b, 55, Corollary to Theorem 1],
there exists a short exact sequence of coherent algebraic sheaves:

0 −→ R −→ L −→ F −→ 0,

where L is a direct sum of sheaves isomorphic to O(n). By Lemma 5, Theorem 1 is true for the sheaf L.
We have a commutative diagram:

Hq(X,R) Hq(X,L) Hq(X,F) Hq+1(X,R) Hq+1(X,L)

Hq(Xh,Rh) Hq(Xh,Lh) Hq(Xh,Fh) Hq+1(Xh,Rh) Hq+1(Xh,Lh)

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

In this diagram, the homomorphisms ϵ4 and ϵ5 are bijective, by the inductive hypothesis. By the previous,
the Five lemma implies that ϵ3 is surjective. This result is true for any coherent algebraic sheaf F , so in
particular to R, which shows that ϵ1 is surjective. Another application of the Five lemma shows that ϵ3
is bijective, which finishes the proof.

18Serre: One can calculate Hq(X,O) directly using the open cover of X defined in Section 3.8 and a Laurent series
development (J. Frenkel, unpublished). In this way one avoids any recourse to the theory of Kähler manifolds.
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3.6 Proof of Theorem 2

Let A = Hom(F ,G), the sheaf of germs of homomorphisms F → G (see [Ser55b, 11,14]). An element
f ∈ Ax is a germ of some homomorphism F → G, in a neighbourhood of x, so defines a germ of a
homomorphism fh from the analytic sheaf Fh to Gh. The map f 7→ fh is an O′-linear homomorphism
from the sheaf A′ defined by A (see Section 3.1) to the sheaf B = Hom(Fh,Gh). This homomorphism
extends by linearity to a homomorphism

ι : Ah −→ B.

Lemma 6. The homomorphism ι : Ah → B is bijective.

Let x ∈ X. Since F is coherent, we have by [Ser55b, 14]:

Ax = Hom(Fx,Gx) and so Ah
x = Hom(Fx,Gx)⊗Hx;

the functors ⊗ and Hom are over the ring Ox.
Since Fh is coherent, where have, in the same way:

Bx = Hom(Fx ⊗Hx,Gx ⊗Hx),

where the functor ⊗ is over Ox, and the functor Hom over Hx.
This implies that the homomorphism:

ιx : Hom(Fx,Gx)⊗Hx −→ Hom(Fx ⊗Hx,Gx ⊗Hx)

is bijective, since the pair (Ox,Hx) is flat and using Proposition 15.
We now demonstrate Theorem 2. Consider the homomorphisms:

H0(X,A)
ϵ−→ H0(Xh,Ah)

ι−→ H0(Xh,B).

An element of H0(X,A) (resp. of H0(Xh,B)) is a homomorphism F → G (resp. Fh → Gh). Moreover,
if f ∈ H0(X,A) we have ι ◦ ϵ(f) = fh, by the definition of ι. Theorem 2 reduces to showing that ι ◦ ϵ is
bijective. The map ϵ is bijective by Theorem 1 (which applies since A is coherent, by [Ser55b, 14]), and
ι is bijective by Lemma 6.

3.7 Proof of Theorem 3: preliminaries

The uniqueness of the sheaf F follows from Theorem 2. If F and G are two coherent algebraic sheaves
fulfilling the statement, there exists by hypothesis an isomorphism g : Fh → Gh. By Theorem 2, there is
a homomorphism f : F → G so that g = fh. If we denote by A and B the kernel and cokernel of f , we
have an exact sequence:

0 −→ A −→ F f−−→ G −→ B −→ 0,

from which we obtain, by Proposition 10 a), an exact sequence:

0 −→ Ah −→ Fh g−→ Gh −→ Bh −→ 0.

Since g is bijective, this implies that Ah = Bh = 0, which by Proposition 10 b) implies that A = B = 0,
showing that f is bijective.

It remains to demonstrate the existence of F . I claim that we may restrict ourselves to the case where
X is a projective space CP r. To show this, let Y be an algebraic subvariety of X = CP r, and M a
coherent analytic sheaf of Y h. The sheaf MX obtained by extending M by 0 outside Y h is a coherent
analytic sheaf on Xh. If we take as given Theorem 3 for the space X, there exists a coherent algebraic
sheaf G on X such that Gh is isomorphic to MX . Let J = J (Y ), the coherent sheaf of ideals defined by
the subvariety Y . If f ∈ Jx, multiplication by f is an endomorphism φ of Gx; the endomorphism φh of
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Gh
x = MX

x is zero, since M is a coherent analytic sheaf on Y h. By Proposition 10 b), the same is true
of φ. Therefore, we have that J · G = 0, which indicates there exists a coherent algebraic sheaf F on Y ,
such that G = FX [Ser55b, 39, Proposition 3]. By Proposition 11, (Fh)X is isomorphic to (FX)h = Gh,
which is isomorphic to MX . By restriction to Y , we see that Fh is isomorphic to M, which demonstrates
our assertion.

3.8 Proof of Theorem 3: the sheaves M(n)

By the previous subsection, we may suppose that X = CP r, and reason by induction on r, the case where
r = 0 being trivial.

For every n ∈ Z, we first define a new analytic sheaf M(n).
Let t0, . . . , tr be a system of homogenous coordinates onX, and let Ui be the open set where ti ̸= 0. We

denote by Mi the restriction of the sheaf M to Ui. Multiplication by tnj /t
n
i is an isomorphism of Mj onto

Mi, defined on Ui ∩Uj . The sheaf M(n) is defined by glueing the sheaves Mi along these isomorphisms
(compare [Ser55b, 54], where the same construction is applied to algebraic sheaves). The sheaf M(n) is
locally isomorphic to M, so is coherent as M is; we have a canonical isomorphism M(n) = M⊗H(n),
where the tensor product is taken over H. If F is an algebraic sheaf, we have that Fh(n) = F(n)h.

Lemma 7. Let E be a hyperplane in CP r, and let A be a coherent analytic sheaf on E. We have
Hq(Eh,A(n)) = 0 for q > 0 and n sufficiently large.

(This is “Theorem B” of [Car, 1953-4, exp. 18].)
By the inductive hypothesis, there exists a coherent algebraic sheaf F on E such that A = Fh, and

we have A(n) = F(n)h. By Theorem 1, Hq(Eh,A(n)) is isomorphic to Hq(E,F(n)), and the lemma
follows from [Dol53, 65, Proposition 7].

Lemma 8. Let M be a coherent analytic sheaf of X = CP r. There exists an integer n(M) such that, for
every n ≥ (M), and for every x ∈ X, the Hx-modules M(n)x is generated by elements of H0(Xh,M(n)).

(This is “Theorem A” of [Car, 1953-4, exp. 18].)
First we remark that, if H0(Xh,M(n)) is generated by M(n)x, the same property is true for every

m ≥ n. To this effect, let k be an index such that x ∈ Uk; for every i, let θi be the homothety of ratio
(tk/ti)

m−n on Mi. The θi commute with the identifications which define M(n) and M(m) respectively,
so give rise to a homomorphism θ : M(n) → M(m). Since θ is an isomorphism on Uk, our assertion
follows.

Remark also that, is H0(Xh,M(n)) generates M(n)x, it also generates M(n)y for y sufficiently close
to x, by [Ser55b, 12].

These two remarks reduce us to demonstrate the following statement: for every x ∈ X, there is an
integer n, dependent on x and on M, such that H0(Xh,M(n)) generates M(n)x.

Choose a hyperplane E passing through x, with homogenous equation t = 0. If A(E) denotes the
sheaf of ideals defined by E (see Section 1.3), we have an exact sequence:

0 −→ A(E) −→ H −→ HE −→ 0.

In addition, the sheaf A(E) is isomorphic to H(−1), where the isomorphism H(−1) → A(E) is defined
by multiplication by t (see the proof of Lemma 5).

By tensoring with M, we find an exact sequence:

M⊗A(E) −→ M −→ M⊗HE −→ 0.

Denote by B the sheaf M⊗HE , and let C be the kernel of the homomorphism M⊗A(E) → M (we have
C = Tor1(M,HE)). Since A(E) is isomorphic to H(−1), the sheaf M⊗A(E) is isomorphic to M(−1),
and we obtain an exact sequence:

0 −→ C −→ M(−1) −→ M −→ B −→ 0. (1)
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Applying the functor M(n) to the exact sequence eq. (1), we obtain a new exact sequence:

0 −→ C(n) −→ M(n− 1) −→ M(n) −→ B(n) −→ 0. (2)

Let Ln be the kernel of the homomorphism M(n) → B(n); the sequence eq. (2) decomposes into two
exact sequences:

0 −→ C(n) −→ M(n− 1) −→ Ln −→ 0, (3)

0 −→ Ln −→ M(n) −→ B(n) −→ 0, (4)

which, in their turn, give rise to exact sequences in cohomology:

H1(Xh,M(n− 1)) −→ H1(Xh,Ln) −→ H2(Xh, C(n)) (5)

and
H1(Xh,Ln) −→ H1(Xh,M(n) −→ H1(Xh,B(n)). (6)

By the definitions of B and C, we have A(E) · B = 0 and A(E) · C = 0, which indicates that B and C
are coherent analytic sheaves on the hyperplane E. Applying Lemma 7, we see that for some integer n0

and every n ≥ n0, H
1(Xh,B(n)) = 0 and H2(Xh, C(n)) = 0. Then, the exact sequences eqs. (5) and (6)

give us the inequalities:

dimH1(Xh,M(n− 1)) ≥ dimH1(Xh,Ln) ≥ dimH1(Xh,M(n)). (7)

These dimesions are finite, by [CS53] (see also [Car, 1953-4, exp. 17]). As a result, dimH1(Xh,M(n))
is a decreasing function on n, for n ≥ n0; as such, there exists an integer n1 ≥ n0 such that the function
dimH1(Xh,M(n)) is constant for n ≥ n1. Then we have19:

dimH1(Xh,M(n− 1)) = dimH1(Xh,Ln) = dimH1(Xh,M(n)) for n > n1. (8)

Since n1 ≥ n0, we have H1(Xh,B(n)) = 0, and the exact sequence eq. (6) shows that H1(Xh,Ln) →
H1(Xh,M(n)) is surjective. However, by eq. (8), these two vector spaces have the same dimension; the
homomorphism in question is then injective, and the exact sequence eq. (4) shows that20

H0(Xh,M(n)) −→ H0(Xh,B(n)) is surjective for n > n1. (9)

Now we choose an integer n > n1 so that H0(Xh,B(n)) generates B(n)x; this is possible, as B is
a coherent analytic sheaf on E, so has the form Gh, which implies that H0(Xh,B(n)) = H0(X,G(n))
by Theorem 1, and we know that H0(X,G(n)) generates G(n)x for n sufficiently large, by [Ser55b, 55,
Theorem 1].

Having done this, I claim that this integer n satisfies our requirements. To demonstrate this, write,
to simplify notation, A = Hx, M = M(n)x, p = Ax(E), and let N be the sub-A-module of M generated
by H0(Xh,M(n)). We have

B(n)x = M(n)x ⊗Hx,E = M ⊗A A/p = M/pM.

On the other hand, the preceding discussion implies that the canonical image of N in M/pM generates
M/pM . This may be written M = N + pM , which implies, a fortiori, M = N + mM (m denoting the
maximal ideal of the local ring A). This implies that M = N (Corollary 5). This finishes the proof of
Lemma 8.

19There is a small typo here in the original, changing the first n− 1 to n.
20Serre: one recognises the procedure used by Kodaira-Spencer for demonstrating Lefschetz’ Theorem [KS53].
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3.9 Completing the proof of Theorem 3

Let, as before, M be a coherent analytic sheaf on X = CP r. In light of Lemma 8, there is an integer n
such that M(n) is isomorphic to a quotient of some sheaf Hp, and as such M is isomorphic to a quotient
on H(−n)p. If we denote by L0 the coherent algebraic sheaf O(−n)p, we find an exact sequence:

0 −→ R −→ Lh
0 −→ M −→ 0,

where R is a coherent analytic sheaf.
Applying the same reasoning to R, we construct a coherent algebraic sheaf L1, and a surjective

analytic homomorphism Lh
1 → R. From this, we obtain an exact sequence:

Lh
1

g−→ Lh
0 −→ M −→ 0.

By Theorem 2, there is a homomorphism f : L1 → L2 such that g = fh. If we denote by F the
cokernel of f , we have an exact sequence:

L1
f−−→ L0 −→ F −→ 0,

from which (Proposition 10), a final exact sequence:

Lh
1

g−→ Lh
0 −→ Fh −→ 0,

which demonstrates that M is isomorphic to Fh, finishing the proof.

4 Applications

4.1 Chow’s theorem

Proposition 12 (Chow’s theorem). Every closed analytic subset of projective space is algebraic.

We show how this result follows from Theorem 3. Let X be some projective space, and Y a closed
analytic subset of Xh. By a theorem of Cartan (Proposition 1), the sheaf HY = HX/A(Y ) is a coherent
sheaf on Xh; by Theorem 3 there exists a coherent algebraic sheaf F on X so that Fh = HY . By
Proposition 10 b), the support of Fh is equal to that of F (recall that, as in [Ser55b, 81], the support of
F is the set of x ∈ X such that Fx ̸= 0), so is Z-closed as F is coherent. Since Fh = HY , this implies
that Y is Z-closed.

We indicate now some simple applications of Chow’s theorem.

Proposition 13. If X is an algebraic variety, every compact analytic subset X ′ of X is algebraic.

Recall the notations of the proof of Proposition 6: let Y be a projective variety, U a Z-open and
Z-dense subset of Y , and f : U → X a surjective regular map such whose graph T is Z-closed in X × Y .
Let T ′ = T ∩ (X ′ × Y ); since X ′ and Y are compact, and T is closed, T ′ is compact; as such, the same
is true of the projection Y ′ of T ′ onto the factor Y . On the other hand, Y ′ = f−1(X ′), which implies
that Y ′ is a closed analytic subset of U , and as such of Y . Chow’s theorem implies that Y ′ is a Z-closed
subset of Y . Applying Proposition 7 to f : Y ′ → X, we conclude that X ′ = f(Y ′) is Z-closed in X.

Proposition 14. Every holomorphic function f from a compact algebraic variety X to a variety Y is
regular.

Let T be the graph of f in X × Y . Since f is holomorphic, T is a compact analytic subset of X × Y ;
Proposition 13 implies that T is algebraic, which implies that f is regular, by Proposition 8.

Corollary 4. Every compact analytic space has, in addition, the structure of an algebraic variety.
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A Results on local rings

All rings considered below will be commutative and unital; all modules over these rings will be unitary.

A.1 Flat modules

Definition 3. Let B be an A module. We say that B is A-flat (or flat) if, for every exact sequence of
A-modules:

E −→ F −→ G,

the sequence
E ⊗A B −→ F ⊗A B −→ G⊗A B

is exact.

Examining the definition of the functors Tor, the preceding condition is equivalent to saying that
TorA1 (B,Q) = 0 for every A-module Q; since Tor commutes with inductive limits, we can restrict to the
case of finite-type modules Q, and similarly (by the exact sequence for Tor) to modules generated by a
single element. Therefore, for B to be A-flat, it is necessary and sufficient that TorA1 (B,A/a) = 0 for
every ideal a of A — in other words that the canonical homomorphism a⊗A B → B is injective.

Example 1. 1. If A is a principal ideal domain, the previous implies that “B is A-flat” is equivalent to
“B is torsion-free”.

2. If S is a multiplicatively-closed subset of A, the ring of fractions AS is A-flat, by [Ser55b, 48,
Lemma 1].

Let A and B be two rings, and let θ : A → B be a homomorphism; this homomorphism gives B the
structure of an A-module. If E and F are two A-modules, E ⊗A B and F ⊗A B have the structure of
B-modules; in addition, if f : E → F is a homomorphism, f ⊗ 1 is a B-homomorphism from E ⊗A B to
F ⊗A B. Therefore, we obtain a canonical A-linear map:

HomA(E,F ) −→ HomB(E ⊗A B,F ⊗A B),

which extends by linearity to a B-linear map:

ι : HomA(E,F )⊗A B −→ HomB(E ⊗A B,F ⊗A B).

Proposition 15. The homomorphism ι defined above is bijective in the case that A is a noetherian ring,
E is a finite-type A-module, and B is A-flat.

For a fixed module F , write:

T (E) = HomA(E,F )⊗A B and T ′(E) = HomB(E ⊗A B,F ⊗A B),

so that ι is a morphism of functors from T (E) to T ′(E).
For E = A, we have T (E) = T ′(E) = F ⊗AB, and ι is bijective; the same is true if E is a free module

of finite type.
Since A is noetherian, and E has finite type, there is an exact sequence:

L1 −→ L0 −→ E −→ 0,

where L0 and L1 are free modules of finite type. Consider the commutative diagram:

0 T (E) T (L0) T (L1)

0 T ′(E) T ′(L0) T ′(L1).

ι ι0 ι1

The first line is exact since B is A-flat, and the second is also by general properties of the functors ⊗ and
Hom. Since we know that ι0 and ι1 are bijective, it follows that ι is bijective.
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A.2 Flat pairs

Definition 4. A pair of rings A ⊂ B is called flat if B/A is a flat A-module.

Proposition 16. For a pair (A,B) of rings to be flat, it is necessary and sufficient that B is A-flat, and
that one of the following properties are satisfied:

• a) (resp. a’)) For every A-module (resp. every finite-type A-module) E, the homomorphism E →
E ⊗A B is injective.

• a”) For every ideal a of A, aB ∩A = a.

If E is an A-module, the exact sequence:

0 −→ A −→ B −→ B/A −→ 0,

gives rise to an exact sequence:

TorA1 (A,E) −→ TorA1 (B,E) −→ TorA1 (B/A,E) −→ A⊗A E −→ B ⊗A E.

Since A⊗A E = E and Tor(A,E) = 0, we obtain a new exact sequence:

0 −→ TorA1 (B,E) −→ TorA1 (B/A,E) −→ E −→ B ⊗A E.

From this, we observe that, for TorA1 (B/A,E) to be zero, it is necessary and sufficient that the same is
true of TorA1 (B,E) and that E → E ⊗A B is injective. The proposition follows immediately (note that
the property a”) reduces to the statement that A/a → A/a⊗A B is injective).

Proposition 17. Let A ⊂ B ⊂ C be three rings. If the pairs (A,C) and (B,C) are flat, the same is true
of (A,B).

We first show that B is A-flat, in other words, that given an exact sequence of A-modules:

0 −→ E −→ F,

the sequence 0 → E ⊗A B → F ⊗A B is also exact.
Let N be the kernel of the homomorphism E ⊗A B → F ⊗A B; since C is B-flat, we have an exact

sequence:
0 −→ N ⊗B C −→ (E ⊗A B)⊗B C −→ (F ⊗A B)⊗B C.

However, by the associativity of the tensor product, (E ⊗A B) ⊗B C is identified with E ⊗A C, and
(F ⊗A B) ⊗B C with F ⊗A C. In addition, C being A-flat, the homomorphism E ⊗A C → F ⊗A C is
injective. It follows that N⊗BC = 0, and, applying Proposition 16 to the pair (B,C), we see that N = 0,
which shows that B is A-flat.

On the other hand, if E is an A-module, the composite E → E ⊗A B → E ⊗A C is injective (since
the pair (A,C) is flat), and so a fortiori the same is true of E → E⊗AB; this shows that the pair (A,B)
satisfies all the hypotheses of Proposition 16.

A.3 Modules over a local ring

In this subsection, A denotes a notherian local ring21, with maximal ideal m.

Proposition 18. If a finite type A-module E satisfies the relation E = mE, the E = 0.

21Serre: in fact, all the results of the next two sections are valid without change for a Zariski ring, see [Sam53b, p. 157].
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(See [Sam53b, p.138], or [Car, 1955-6, exp. 1] for example.)
Suppose that E ̸= 0, and let e1, . . . , en be a system of generators for E with n minimal. Since

en ∈ mE, we have en = x1e1 + · · ·+ xnen, with xi ∈ m, from which we obtain:

(1− xn)en = x1e1 + · · ·+ xn−1en−1;

since 1− xn is invertible in A, this shows that e1, . . . , en−1, contradicting the hypothesis on n.

Corollary 5. Let E be an A-module of finite-type. If a submodule F of E satisfies the relation E =
F +mE, we have E = F .

The relation implies that E/F = m(E/F ).
We give every A-module E the m-adic topology, where the submodules mnE form a neighbourhood

base of 0 (see [Sam53b, p. 153]).

Proposition 19. Let E be an A-module of finite type. Then:
a) THe induced topology on a submodule F of E by the m-adic topology on E coincides with the

m-adic topology on F .
b) Every submodule of E is closed in the m-adic topology on E (and, in particular, E is Hausdorff).

(See [Sam53b, loc. cit.] or [Car, exp. 8].)
Let us speak briefly to the proof of this proposition. We start with a), using the theory of primary

decompositions (Krull, see [Sam53b]), which establishes the existence of an integer r such that

F ∩mnE = mn−r(F ∩mrE) for n ≥ r

(Artin-Rees, see [Car, 1955-6, exp. 2]).
We now show that E is Hausdorff: applying a) to the closure of 0, which is a submodule F , we see

that F = mF , so F = 0 by Proposition 18. Applying the result to quotient modules of E, we deduce b).
As before, let E be a finite-type A-module, and let Ê and Â be the completions of E and A for the

m-adic topology. The bilinear map A×E → E extends by continuity to a map Â× Ê → Ê, which makes
Ê an Â-module. As such, the canonical injection of E into Ê extends by linearity to a homomorphism

ϵ : E ⊗A Â −→ Ê.

Proposition 20. For every finite-type A-module E, the homomorphism ϵ is bijective.

Let 0 → R → L → E → 0 be an exact sequence of A-modules, with L free and of finite type. Since
A is noetherian, R is of finite type; on the other hand, Proposition 19 demonstrates that the m-adic
topology on R is induced by that of L, and it is clear that the topology on E is the quotient of that of
L. Since the topologies are metrisable22, we deduce from this an exact sequence:

0 −→ R̂ −→ L̂ −→ Ê −→ 0.

Consider now the commutative diagram:

R⊗A Â L⊗A Â E ⊗A Â 0

R̂ L̂ Ê 0

ϵ′′ ϵ′ ϵ

The two lines of this diagram are exact sequences, and it is clear that ϵ′ is bijective. One deduces that ϵ
is surjective (in other words, we have that Ê = Â ·E, see [Sam53b, p. 153, Lemma 1]). This result, being
demonstrated for any finite-type A-module, applies in particular to R, which shows that ϵ′′ is surjective.
Applying the Five lemma, we conclude that ϵ is bijective.

22A metric is d(x, y) = 2−n for x ̸= y, where n is such that x− y ∈ mn \ mn+1.
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A.4 Flatness for local rings

All the local rings considered below are supposed to be notherian.

Proposition 21. Let A be a local ring, and let Â be its completion. The pair (A, Â) is flat.

First, Â is A-flat. To show this, it suffices to demonstrate that, if E → F is injective, the same is true
of E ⊗A Â → F ⊗A Â, and we may suppose that E and F are of finite type. In this case, Proposition 20
shows that E ⊗A Â is identified with Ê, and F ⊗A Â with F̂ , and our assertion results from the evident
fact that Ê embeds into F̂ .

In the same way, the fact that E → Ê is injective if E is of finite type shows that the pair (A, Â)
verifies the property a’) of Proposition 16, so forms a flat pair.

Now let A and B be a two local rings, and let θ : A → B be a homomorphism. Suppose that θ
maps the maximal ideal of A into that of B. Then θ is continuous, and so extends to a homomorphism
θ̂ : Â → B̂.

Proposition 22. Suppose that θ̂ : Â → B̂ is bijective, and identify A with a subring of B via θ. Then
(A,B) is a flat pair.

We have A ⊂ B ⊂ B̂ = Â, and the pairs (A, Â) and (B, B̂) are flat, by the previous proposition.
Proposition 17 implies that (A,B) is a flat pair.

Proposition 23. Let A and B be local rings, a an ideal of A, and let θ : A → B be a homomorphism.
If θ satisfies the hypotheses of Proposition 22, the same is true of the induced map θ : A/a → B/θ(a)B
(which shows that (A/a, B/θ(a)B) is a flat pair).

By Proposition 20, the completion of A/a is Â/aÂ, and similarly that of B/θ(a)B is B̂/θ(a)B̂, which
implies the result.

Proposition 24. Let A and A′ be two local rings, θ : A → A′ a homomorphism satisfying the hypotheses
of Proposition 22, and let E be an A-module of finite type. If the A′-module E′ = E⊗AA′ is isomorphic
to (A′)n, then E is isomorphic to An.

We identify A with a subring of A′ via θ. If m and m′ denote the maximal ideals of A and A′, we then
have m ⊂ m′; on the other hand, since m′ is a neighbourhood of 0 in A′, and since A is dense in A′, we
have A′ = m′ + A, which shows that A/m = A′/m′, and so E/mE = E′/m′E′. Since the A′-module E′

is a free module of rank n, the same is true of the A′/m′-module E′/m′E′. From this, we conclude that
it is possible to choose n elements e1, . . . , en in E so that their images in E/mE form a basis for E/mE,
considered as a vector space over A/m. The elements ei define a homomorphism f : An → E which is
surjective by Corollary 5. We will show that f is injective, which demonstrates the proposition.

Let N be the kernel of f . As the pair (A,A′) is flat (Proposition 22), the exact sequence:

0 −→ N −→ An f−−→ E −→ 0,

gives rise to an exact sequence:

0 −→ N ′ −→ (A′)n
f ′

−−→ E′ −→ 0.

Since the module E′ is free, N ′ is a direct summand in (A′)n, so we have an exact sequence:

0 −→ N ′/m′N ′ −→ (A′)n/m′(A′)n −→ E′/m′E′ −→ 0.

However, by construction, f ′ defines a bijection of (A′)n/m′(A′)n onto E′/m′E′. It follows that
N ′/m′N ′ = 0, so N ′ = 0 (Proposition 18), from which it follows that N = 0 as the pair (A,A′) is flat.
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