
Proof Theory & Computation:
or, why study logic?

Thomas Waring

Philosophy & foundations

Historically, logic was studied as a foundation —
for thought, philosophy, mathematics…

Gottlob Frege in C.XIX: Concept-notation: A
Formal Language for Pure Thought Modeled on
that of Arithmetic

Foundation for mathematics

David Hilbert wanted an axiomatic system of logic
to underlie all of mathematics.

“… the problem of the solvability in principle
of every mathematical question …”

“... the theory of axioms must … show that
within every field of knowledge contradictions
based on the underlying axiom-system are
absolutely impossible.”

(Taken from Axiomatic Thought, 1918. My emphasis.)

First efforts

The usual axiomatic system is based on set theory,
due to Cantor & others.

Everything is a set, sets have things in them (which
are also sets), we can combine them, etc…

ℕ = {0, 1, 2, ... }

The key operation is comprehension:

{x : x is an even number } = {0, 2, 4, ...}

Russell’s paradox

The barber shaves everyone who doesn’t shave
themself. So

B = {x : x ∉ x}.

Who shaves the barber? We have

B ∈ B ⟹ B ∉ B,

but also

B ∉ B ⟹ B ∈ B.

The problem runs deeper

Gödel’s Incompleteness Theorems (1931)

1. In any* consistent system, there is a formula G
which is true but not provable.

2. A consistent system cannot prove its own
consistency.

More or less, G = “I am not provable.”

So, why study logic?

● If we want a theory of logic to be a foundation,
it had better be consistent.

● To prove the consistency of our theory, we
need some “bigger” theory.

● But to justify the new theory, we need a bigger
theory again…

It’s turtles all the way down!

“From Why? to How?” — BHK interpretation

Logic can’t (completely) show is why things are true — our interest turns to how,
that is, to proofs. What is a proof of P? We build it up from the pieces of the
statement P.

BHK for:
Brouwer,
Heyting and
Kolmogorov
(left to right)

“From Why? to How?” — BHK interpretation

Logic can’t (completely) show is why things are true — our interest turns to how,
that is, to proofs. What is a proof of P? We build it up from the pieces of the
statement P.

If P = “A and B”, a proof π of P is a pair (π₁, π₂), where π₁ proves A and π₂ proves B.

π

…

A ∨ B

=

π1

…

A

π2

…

B

,

“From Why? to How?” — BHK interpretation

Logic can’t (completely) show is why things are true — our interest turns to how,
that is, to proofs. What is a proof of P? We build it up from the pieces of the
statement P.

If P = “A or B”, a proof π of P is a pair (X, π’), where X = A or B and π’ proves X.

π

…

A ∨ B

=

π’

…

A

π’

…

B

or

“From Why? to How?” — BHK interpretation

Logic can’t (completely) show is why things are true — our interest turns to how,
that is, to proofs. What is a proof of P? We build it up from the pieces of the
statement P.

If P = “A implies B”, a proof π of P is a machine (or function, algorithm) which
turns proofs of A into proofs of B.

π

…

A → B

=

π’

…

A

π’’

…

B

What is a function?

What is a function? According to Church, we can
do two things:

Apply a function to something: from “A” and
“A → B” get “B” — modus ponens.

Compose functions: from “B → C” and “A → B”
get “A → C”.

A → B B → C

Composing proofs — the cut rule

What is composition for proofs? As formalised by Gentzen, we write “A ⊢ B” for “A
proves B”. Therefore, composing proofs looks like:

Cut elimination

Some cuts are unnecessary, viz:

Others we can move around, such as:

Cut elimination — proofs & computation

Gentzen’s “Hauptsatz” provides an algorithm to eliminate cuts from a proof —
anything proven with cut can be proved without it.

In this way, proofs can simulate computation.

3 x 2cut

6

Making this precise: Church-Turing thesis

The first step to making this precise is pinning down
what we mean by “computation”.

Turing defines a Turing Machine, an idealised
computer.

The Church-Turing thesis is that “computable”
means “computable by a Turing Machine”.
Proven to be equivalent to many other abstractions
of a computer.

Making this precise: Curry-Howard correspondence

One “Turing complete” abstraction is Church’s λ-calculus.

The Curry-Howard correspondence says that proofs and λ-calculus are two
perspectives on the same thing.

Philosophically:

Proofs are programs,

cut elimination is execution.

Where to from here?

Proofs

Recall Russell’s paradox, which looked
like this:

B ∈ B

B ∉ B

Programs

Consider the Halting Problem: given a
program, give an algorithm to decide
whether it runs forever.

Church (1935), Turing (1937): the
halting problem is unsolvable.

The method of proof is the same!

If this is interesting to you…

Ask me about it! Now or later, I’m always happy to discuss.

Most of this talk follows the work of J.Y. Girard.

Further reading from Girard:

● Detailed history: La Théorie de la Démonstration: du programme de Hilbert
à la logique linéaire (1997).

● The proof-program connection: Proofs and Types (1989).
● Philosophising (if you’re feeling brave!): The Blind Spot: lectures on logic

(2010) — adapted from a course in Rome!

