Regularly Parametrised Models

Thomas Waring

March 8, 2022

This talk introduces the RLCT of an ideal, which we can use, via regularly parametrised models, to simply calculations. The main reference is [Lin11], see §§1.4 and 4.1. Throughout, let $W \subset \mathbb{R}^N$ be compact and semianalytic, and \mathcal{A}_W be the ring of (real) analytic functions on W.

Definition 1. Let $f, \varphi \in \mathcal{A}_W$ be non-negative analytic functions on W. The RLCT of f, with the prior φ , is the pair (λ, θ) of real numbers, such that the *partition function*:

$$Z(n) := \int_{W} e^{-nf(w)} \varphi(w) \, du$$

obeys the asymptotic expression:

$$-\log Z(n) = \lambda \log n - (\theta - 1) \log \log n + O(1).$$
(1)

Notation: $\operatorname{RLCT}_W(f;\varphi) = (\lambda, \theta).$

Remark 2. See [Lin11, §3] for the proof that this is well-defined. In fact λ is rational and θ a positive integer, and they can be respectively calculated as the smallest pole of

$$\zeta(z) = \int_W f(w)^{-z} \varphi(w) \, dw$$

and its multiplicity. We we write $(\lambda, \theta) < (\lambda', \theta')$, if $\lambda < \lambda'$ or $\lambda = \lambda'$ and $\theta > \theta'$, which is equivalent to

$$\lambda \log n - (\theta - 1) \log \log n < \lambda' \log n - (\theta' - 1) \log \log n$$

for all sufficiently large n.

Lemma 3. Let f, g be real analytic on W. If there is a positive constant c such that $f \leq cg$ on W, then

$$\operatorname{RLCT}_W(f;\varphi) \leq \operatorname{RLCT}_W(g;\varphi),$$

for any prior φ .

Proof. Observe that:

$$Z_f(n) = \int_W dw \, e^{-nf(w)} \ge \int_W dw \, e^{-cng(w)} = Z_g(cn),$$

so we have,

$$\begin{split} \lambda_f \log n - (\theta_f - 1) \log \log n &\leq \lambda_g \log(cn) - (\theta_g - 1) \log \log(cn) + O(1) \\ &= \lambda_g \log n - (\theta_g - 1) \log \log n + \lambda_g \log c \\ &- (\theta_g - 1) \log \left(1 + \frac{\log c}{\log n}\right) + O(1). \end{split}$$

The last two terms are O(1), so we have, for sufficiently large n:

$$\lambda_f \log n - (\theta_f - 1) \log \log n \le \lambda_g \log n - (\theta_g - 1) \log \log n.$$

Corollary 4. If there are positive constants c, d such that $cg(w) \leq f(w) \leq dg(w)$, then $\operatorname{RLCT}_W(f;\varphi) = \operatorname{RLCT}_W(g;\varphi)$. Such functions are called *comparable*.

Corollary 5. Let $I = (f_1, \ldots, f_s)$ and $J = (g_1, \ldots, g_r)$ be ideals (with a choice of generators) of \mathcal{A}_W . If $I \subset J$, then

$$\operatorname{RLCT}_W(f_1^2 + \dots + f_r^2; \varphi) \leq \operatorname{RLCT}_W(g_1^2 + \dots + g_r^2; \varphi).$$

Proof. Writing each f_i in terms of the g_j , we have:

$$f_i = \sum_{j=1}^r h_{ij} g_j,$$

for some $h_{ij} \in \mathcal{A}_W$. By the Cauchy-Schwartz inequality:

$$f_i^2 = \left(\sum_{j=1}^r h_{ij}g_j\right)^2 \le \left(\sum_{j=1}^r h_{ij}^2\right) \left(\sum_{j=1}^r g_j^2\right).$$

and so,

$$\sum_{i=1}^{s} f_i^2 \le \left(\sum_{i=1}^{s} \sum_{j=1}^{r} h_{ij}^2\right) \left(\sum_{j=1}^{r} g_j^2\right).$$

As the h_{ij} are analytic (continuous) on the compact set W, there exists a constant c so that,

$$\sup_{w \in W} \left(\sum_{i=1}^{s} \sum_{j=1}^{r} h_{ij}(w)^2 \right) = c$$

and we win.

The last corollary makes the next definition independent of the choice of (finitely many) generators for the ideal I.

Definition 6. Let $I = (f_1, \ldots, f_r) \subset \mathcal{A}_W$ be an ideal. Then $\operatorname{RLCT}_W(I; \varphi)$ is defined to be the RLCT associated to the function $f_1^2 + \cdots + f_r^2$, with the prior φ .

Caution: this differs (for convenience) by a factor of 2 from the definition in [Lin11]. As a result, there is a discrepancy between the RLCT of a (non-negative) function, and of the ideal it generates:

$$\operatorname{RLCT}_W(f;\varphi) = (\lambda,\theta),$$

$$\operatorname{RLCT}_W((f);\varphi) = (\lambda/2,\theta)$$

(Proof: examine the zeta functions.)

Our definition is useful by the following theorem (which is [Lin11, Proposition 4.4]. In particular, the hypotheses are satisfied when $f(w) = D_{\text{KL}}(q \mid \mid p(-\mid w))$, where $p : W \to \Delta Z$ parametrises probability distributions over some finite set Z. In this case, the fibre ideal is generated by the difference between the component probabilities of p and the true distribution q.

Theorem 7. Let $f: W \to \mathbb{R}$ be real analytic, and suppose that f factors through $u: W \to U$, where $U \subset \mathbb{R}^M$ is compact and semi-analytic.

Let $\hat{w} \in W$ be a point with $f(\hat{w}) = 0$, and set $\hat{u} = u(\hat{w})$. If the Hessian of g is positive definite at \hat{u} , then there is a semi-analytic neighbourhood $W' \subset W$ of \hat{w} so that $\operatorname{RLCT}_{W'}(f;\varphi) =$ $\operatorname{RLCT}_{W'}(I;\varphi)$, where I is the *fibre ideal*, generated by the components of u:

$$I = (u_i - \hat{u}_i : i = 1, \dots, m).$$

Proof. Assume that $\hat{u} = 0 \in \mathbb{R}^M$. By the Morse lemma, there is a linear change of coordinates $T : \mathbb{R}^M \to \mathbb{R}^M$ so that $h = g \circ T^{-1} : V \to \mathbb{R}$ has the form:

$$h(v) = (v_1^2 + \dots + v_m^2)(1 + \tilde{h}(v)),$$

where V = T(U) and $\tilde{h}(0) = 0$. Shrinking to $V' \subset V$, assume that $\tilde{h}(V') \subset [-1/2, 1/2]$. Letting λ, μ be, respectively, the smallest and largest eigenvalues of T^tT , we therefore have:

$$\frac{\lambda}{2}(x_1^2 + \dots + x_m^2) \le g(u) \le \frac{3\mu}{2}(x_1^2 + \dots + x_m^2),$$

where the x_i are coordinates on $U' = T^{-1}(V')$. As such, on $W' = u^{-1}(U')$, f is comparable (in the sense of Corollary 4) to the function

$$u_1^2 + \dots + u_m^2$$

which calculates $\operatorname{RLCT}_{W'}(I;\varphi)$.

This is useful for two reasons. First, the functions u_i may well be simpler than the original f. For example, in the case of program synthesis on a Turing machine, they are polynomials (see thesis). Second, the ideal definition is more flexible. As well as the freedom to choose generators, it satisfies several other properties which simplify calculations: see here.

References

[Lin11] S. Lin. Algebraic Methods for Evaluating Integrals in Bayesian Statistics. PhD thesis, University of California, Berkeley, 2011.