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This talk introduces the RLCT of an ideal, which we can use, via regularly parametrised
models, to simply calculations. The main reference is [Lin11], see §§1.4 and 4.1. Throughout,
let W ⊂ RN be compact and semianalytic, and AW be the ring of (real) analytic functions on
W .

Definition 1. Let f, φ ∈ AW be non-negative analytic functions on W . The RLCT of f , with
the prior φ, is the pair (λ, θ) of real numbers, such that the partition function:

Z(n) :=

∫
W

e−nf(w)φ(w) dw

obeys the asymptotic expression:

− logZ(n) = λ log n− (θ − 1) log log n+O(1). (1)

Notation: RLCTW (f ;φ) = (λ, θ).

Remark 2. See [Lin11, §3] for the proof that this is well-defined. In fact λ is rational and θ a
positive integer, and they can be respectively calculated as the smallest pole of

ζ(z) =

∫
W

f(w)−zφ(w) dw

and its multiplicity. We we write (λ, θ) < (λ′, θ′), if λ < λ′ or λ = λ′ and θ > θ′, which is
equivalent to

λ log n− (θ − 1) log log n < λ′ log n− (θ′ − 1) log log n

for all sufficiently large n.

Lemma 3. Let f, g be real analytic on W . If there is a positive constant c such that f ≤ cg on
W , then

RLCTW (f ;φ) ≤ RLCTW (g;φ),

for any prior φ.

Proof. Observe that:

Zf (n) =

∫
W

dw e−nf(w) ≥
∫
W

dw e−cng(w) = Zg(cn),
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so we have,

λf log n− (θf − 1) log log n ≤ λg log(cn)− (θg − 1) log log(cn) +O(1)

= λg log n− (θg − 1) log log n+ λg log c

− (θg − 1) log

(
1 +

log c

log n

)
+O(1).

The last two terms are O(1), so we have, for sufficiently large n:

λf log n− (θf − 1) log log n ≤ λg log n− (θg − 1) log log n.

Corollary 4. If there are positive constants c, d such that cg(w) ≤ f(w) ≤ dg(w), then
RLCTW (f ;φ) = RLCTW (g;φ). Such functions are called comparable.

Corollary 5. Let I = (f1, . . . , fs) and J = (g1, . . . , gr) be ideals (with a choice of generators)
of AW . If I ⊂ J , then

RLCTW (f2
1 + · · ·+ f2

r ;φ) ≤ RLCTW (g21 + · · ·+ g2r ;φ).

Proof. Writing each fi in terms of the gj , we have:

fi =

r∑
j=1

hijgj ,

for some hij ∈ AW . By the Cauchy-Schwartz inequality:

f2
i =

 r∑
j=1

hijgj

2

≤

 r∑
j=1

h2ij

 r∑
j=1

g2j

 .

and so,
s∑

i=1

f2
i ≤

 s∑
i=1

r∑
j=1

h2ij

 r∑
j=1

g2j

 .

As the hij are analytic (continuous) on the compact set W , there exists a constant c so that,

sup
w∈W

 s∑
i=1

r∑
j=1

hij(w)
2

 = c

and we win.

The last corollary makes the next definition independent of the choice of (finitely many)
generators for the ideal I.

Definition 6. Let I = (f1, . . . , fr) ⊂ AW be an ideal. Then RLCTW (I;φ) is defined to be the
RLCT associated to the function f2

1 + · · ·+ f2
r , with the prior φ.
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Caution: this differs (for convenience) by a factor of 2 from the definition in [Lin11]. As a
result, there is a discrepancy between the RLCT of a (non-negative) function, and of the ideal
it generates:

RLCTW (f ;φ) = (λ, θ),

RLCTW

(
(f);φ

)
= (λ/2, θ) .

(Proof: examine the zeta functions.)
Our definition is useful by the following theorem (which is [Lin11, Proposition 4.4]. In

particular, the hypotheses are satisfied when f(w) = DKL(q || p(−|w)), where p : W → ∆Z
parametrises probability distributions over some finite set Z. In this case, the fibre ideal is
generated by the difference between the component probabilities of p and the true distribution
q.

Theorem 7. Let f : W → R be real analytic, and suppose that f factors through u : W → U ,
where U ⊂ RM is compact and semi-analytic.

W U

R

u

f g

Let ŵ ∈ W be a point with f(ŵ) = 0, and set û = u(ŵ). If the Hessian of g is positive definite
at û, then there is a semi-analytic neighbourhood W ′ ⊂ W of ŵ so that RLCTW ′(f ;φ) =
RLCTW ′(I;φ), where I is the fibre ideal, generated by the components of u:

I = (ui − ûi : i = 1, . . . ,m).

Proof. Assume that û = 0 ∈ RM . By the Morse lemma, there is a linear change of coordinates
T : RM → RM so that h = g ◦ T−1 : V → R has the form:

h(v) = (v21 + · · ·+ v2m)(1 + h̃(v)),

where V = T (U) and h̃(0) = 0. Shrinking to V ′ ⊂ V , assume that h̃(V ′) ⊂ [−1/2, 1/2]. Letting
λ, µ be, respectively, the smallest and largest eigenvalues of T tT , we therefore have:

λ

2
(x21 + · · ·+ x2m) ≤ g(u) ≤ 3µ

2
(x21 + · · ·+ x2m),

where the xi are coordinates on U ′ = T−1(V ′). As such, on W ′ = u−1(U ′), f is comparable (in
the sense of Corollary 4) to the function

u21 + · · ·+ u2m

which calculates RLCTW ′(I;φ).

This is useful for two reasons. First, the functions ui may well be simpler than the original
f . For example, in the case of program synthesis on a Turing machine, they are polynomials
(see thesis). Second, the ideal definition is more flexible. As well as the freedom to choose
generators, it satisfies several other properties which simplify calculations: see here.
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https://thomaskwaring.github.io/thesis.pdf
https://thomaskwaring.github.io/rlcts.pdf
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