Calculating RLCTs

TK Waring

December 10, 2021

Contents

1 Introduction 1
2 Results 3
3 Resolution of Singularities 7
3.1 Blowing up 8

1 Introduction

The key geometric invariant in Singular Learning Theory is the Real Log Canonical Threshold (RLCT) Wat09. It can be calculated by resolution of singularities, but in practice this is fiddly. There are some examples, in Watanabe's book and Lin's thesis Lin11, but I found the process of figuring this out moderately tedious. I will collect here some results and examples that I have come across, most of which will not be original, but will hopefully act as a crash course to make practical calculations easier. The notes Lin12 are also useful, but focus on the case where the singularity in question is on the interior. Parts are verbatim or paraphrased from my thesis War21.

Throughout, $W \subset \mathbb{R}^{n}$ will be a compact semi-analytic set, ie:

$$
W=\left\{\mathbf{x} \mid \psi_{1}(\mathbf{x}) \geq 0, \ldots, \psi_{l}(\mathbf{x}) \geq 0\right\}
$$

for some analytic functions $\psi_{1}, \ldots, \psi,{ }^{1}$. The ring of real-analytic functions on W is \mathcal{A}_{W}.
Definition 1.1. The RLCT of $f \in \mathcal{A}_{W}$ on W with the prior φ, is a pair $\operatorname{RLCT}_{W}(f, \varphi)=(\lambda, \theta)$ defined by either of the following equivalent conditions [Lin11, §4.1.1]

- The log of the "Laplace integral"

$$
\log Z(n)=\log \int_{W} \exp (-n|f(w)|)|\varphi(w)| d w
$$

is asymptotically $-\lambda \log (n)+(\theta-1) \log \log (n)$ as $n \rightarrow \infty$.

- The zeta function

$$
\zeta(z)=\int_{W}|f(w)|^{-z}|\varphi(w)| d w
$$

has smallest pole λ, with multiplicity θ.

[^0]We order pairs $\left(\lambda_{1}, \theta_{1}\right)<\left(\lambda_{2}, \theta_{2}\right)$ if, for large enough n :

$$
\lambda_{1} \log (n)-\left(\theta_{1}-1\right) \log \log (n)<\lambda_{2} \log (n)-\left(\theta_{2}-1\right) \log \log (n)
$$

We extend this to ideals of \mathcal{A}_{W} in the following way. By Lemma 2.3 the value is independent of the generators chosen.
Definition 1.2. The RLCT of an ideal $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ is identified with that of the function $f_{1}^{2}+\cdots+f_{r}^{2}$.
Caution: this differs by a factor of 2 from the definition in Lin11. As a result:

$$
\begin{aligned}
\operatorname{RLCT}_{W}(f ; \varphi) & =(\lambda, \theta) \\
\operatorname{RLCT}_{W}(\langle f\rangle ; \varphi) & =(\lambda / 2, \theta)
\end{aligned}
$$

First we collect some useful results for calculations, which are proven in the sequel.

- If $|g| \leq c|f|$ for some constant c, then $\operatorname{RLCT}_{W}(g ; \varphi) \leq \operatorname{RLCT}_{W}(f ; \varphi)$ (Lemma 2.1).
- Analogously perhaps, if $I \subset J$ are ideals, then $\operatorname{RLCT}_{W}(I ; \varphi) \leq \operatorname{RLCT}_{W}(J ; \varphi)$ (Corollary 2.4). Also, for every $r>0$ (Proposition 2.5):

$$
\operatorname{RLCT}_{W}(I ; \varphi)=(\lambda, \theta) \Longrightarrow \operatorname{RLCT}_{W}\left(I^{r} ; \varphi\right)=(\lambda / r, \theta)
$$

- Suppose that $P \in W \subset \mathbb{R}^{n}$ lies in the interior, and let \mathfrak{m}_{P} denote the maximal ideal at P. Then if $\operatorname{ord}_{P}(I)$ is the largest integer K so that $I \subset \mathfrak{m}^{K}$, we have (Corollary 2.8):

$$
\operatorname{RLCT}_{W}(I ; 1) \leq\left(\frac{n}{2 \cdot \operatorname{ord}_{P}(I)}, 1\right)
$$

For functions, this agrees with the usual order of vanishing at P.

- Let W_{1} and W_{2} be semi-analytic, and $J_{i} \subset \mathcal{A}_{W_{i}}$ ideals. Let $W=W_{1} \times W_{2}$, and by composing with the projections, we consider $\mathcal{A}_{W_{i}} \subset \mathcal{A}_{W}$. Suppose $\operatorname{RLCT}_{W_{i}}\left(J_{i} ; \varphi_{i}\right)=\left(\lambda_{i}, \theta_{i}\right)$. Then Proposition 2.10 gives us the formulae:

$$
\begin{aligned}
\operatorname{RLCT}_{W}\left(J_{1}+J_{2} ; \varphi\right) & =\left(\lambda_{1}+\lambda_{2}, \theta_{1}+\theta_{2}-1\right) \\
\operatorname{RLCT}_{W}\left(J_{1} J_{2} ; \varphi\right) & = \begin{cases}\left(\lambda_{1}, \theta_{1}\right) & \lambda_{1}<\lambda_{2} \\
\left(\lambda_{2}, \theta_{2}\right) & \lambda_{2}<\lambda_{1} \\
\left(\lambda_{1}, \theta_{1}+\theta_{2}\right) & \text { else }\end{cases}
\end{aligned}
$$

where $\varphi=\varphi_{1} \times \varphi_{2}$.

- The primary reason for examining the RLCTs of ideals is that, using the result of Lemma 2.11, we can replace a complicated function with a simpler ideal. See below for the precise statement, but here is a special case. Let Z be a finite set, and ΔZ the standard simplex over Z. If $p: W \rightarrow \Delta Z$ is a parametrised family of probability distributions over Z, and $q \in \Delta Z$ is some "true distribution", set

$$
K(w)=D_{\mathrm{KL}}(q \| p(w)):=\sum_{z \in Z} q(z) \log \left(\frac{q(z)}{p(z)}\right)
$$

In this case K has the same RLCT as the ideal:

$$
\langle p(w)(z)-q(z): z \in Z\rangle
$$

A more meaty result is the following, which is proved in Lin11.

Theorem 1.3. Let f and φ be real-analytic on W, and ϕ smooth and strictly positive. Then around every $w \in W$ there is a neighbourhood $N_{w} \subset W$ so that:

$$
\operatorname{RLCT}_{N_{w}}(f ; \varphi \phi)=\operatorname{RLCT}_{N_{w}}(f ; \varphi)
$$

Moreover,

$$
\operatorname{RLCT}_{W}(f ; \varphi \phi)=\min _{w \in \mathbb{V}(f)} \operatorname{RLCT}_{N_{w}}(f ; \varphi)
$$

In what follows, given $w \in W, N_{w}$ will always denote the neighbourhood of the theorem, and by

$$
\operatorname{RLCT}_{w}(f ; \varphi),
$$

we mean the RLCT calculated on an open neighbourhood in \mathbb{R}^{n} (ie ignoring the boundary of W). We have that,

$$
\operatorname{RLCT}_{w}(f ; \varphi) \leq \operatorname{RLCT}_{N_{w}}(f ; \varphi)
$$

This follows as, if $U \subset \mathbb{R}^{n}$ is our open neighbourhood, we can shrink $N_{w} \subset U$ so that $Z_{N_{w}}(n) \leq Z_{U}(n)$ for every n.

The theorem is proven by reduction to the case where f and φ are monomials, integrated over the positive orthant (Proposition 2.9). This uses resolution of singularities, which is deep and difficult Theorem 3.1 Roughly, this (algorithmic) process takes a possibly singular subvariety X of a smooth variety W, and produces a map $\pi: \tilde{W} \rightarrow W$ which is an isomorphism over the complement of the singular locus of X, and which"desingularises" X. Specifically, the strict transform:

$$
\tilde{X}:=\overline{\pi^{-1}(X \backslash \operatorname{Sing}(X))}
$$

is smooth (see Hau14, Lecture 7] for more precise statements of the various forms of this theorem). In Section 3 we sketch a loose understanding of this process, which allows one to calculate RLCTs in practice.

The core of the resolution algorithm is a transform called blowing up (again, we sketch this is slightly more detail in Section 3.1). To desingularise $X \subset W$, we pick some smooth subvariety $Z \subset \operatorname{Sing}(X)$, and compute the blowing-up, which is a map from a new variety $\mathrm{Bl}_{Z}(W) \rightarrow W$. (Note that the blowing up is performed on W, but the centre Z is determined by X.) Repeating this process eventually gets us our resolution. The general case is given below, but in every example from SLT that I have seen the centre Z is some coordinate subspace.

Let $W=\mathbb{R}^{m} \times \mathbb{R}^{n}$, with coordinates $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, x_{n}\right)$, and $Z=\mathbb{R}^{m}$. Then $\mathrm{Bl}_{Z}(W)$ has the description:

$$
\mathrm{Bl}_{Z}(W):=\{(x, y, l) \mid x \in l\} \subset \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{P}^{m-1}
$$

With homogenous coordinates $\left[u_{1}: \cdots: u_{m}\right]$ on \mathbb{P}^{m-1}, the affine piece $u_{m} \neq 0$ has coordinates $\left(x_{m}, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{m-1}\right)$, and the map π is:

$$
\pi\left(x_{m}, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{m-1}\right)=\left(u_{1} x_{m}, \ldots, u_{m-1} x_{m}, x_{m}, y_{1}, \ldots, y_{n}\right)
$$

More detail is given below, but this is about as far as Wat09 goes.

2 Results

Lemma 2.1. Let f, g be analytic functions on W. If there is a constant $c>0$ such that $|g(w)| \leq c|f(w)|$ for every $w \in W$, then:

$$
\operatorname{RLCT}_{W}(g ; \varphi) \leq \operatorname{RLCT}_{W}(f ; \varphi)
$$

Proof. Using monotonicity, we have that $Z_{g}(n) \leq Z_{f}(c n)$. Asymptotically this gives us:

$$
\lambda_{g} \log (n)-\left(\theta_{g}-1\right) \log \log (n) \leq \lambda_{f} \log (c n)-\left(\theta_{f}-1\right) \log \log (c n)+O(1)
$$

This implies the required inequality, as the constant gets absorbed into the constant term.
Corollary 2.2. If there are constants $c_{1}, c_{2}>0$ so that $c_{1}|f(w)| \leq|g(w)| \leq c_{2}|f(w)|$, then $\operatorname{RLCT}_{W}(f ; \varphi)=$ $\operatorname{RLCT}_{W}(g ; \varphi)$. Such functions are called comparable.

Lemma 2.3. Let f_{1}, \ldots, f_{r} and g_{1}, \ldots, g_{s} be analytic on \mathcal{W}. Then if $<g_{1}, \ldots, g_{s}>\subseteq<f_{1}, \ldots, f_{r}>$, then

$$
\operatorname{RLCT}_{W}\left(g_{1}^{2}+\ldots, g_{s}^{2} ; \varphi\right) \leq \operatorname{RLCT}_{W}\left(f_{1}^{2}+\cdots+f_{r}^{2} ; \varphi\right)
$$

Proof. For each $i=1, \ldots, s$, we can find analytic functions h_{1}, \ldots, h_{r} on W so that:

$$
g_{i}=h_{1} f_{1}+\cdots+h_{r} f_{r}
$$

Using the Cauchy-Schwartz inequality, and the fact that W is compact:

$$
g_{i}^{2}=\left(\sum_{j} h_{j} f_{j}\right)^{2} \leq\left(\sum_{j} h_{j}^{2}\right)\left(\sum_{j} f_{j}^{2}\right) \leq c_{i}\left(\sum_{j} f_{j}^{2}\right)
$$

For some constant c_{i}. This implies that

$$
\sum_{i} g_{i}^{2} \leq\left(\sum_{i} c_{i}\right)\left(\sum_{j} f_{j}^{2}\right)
$$

which by Lemma 2.1 implies the result.
Corollary 2.4. If $I \subset J$ are ideals of A_{W}, then:

$$
\operatorname{RLCT}_{W}(I ; \varphi) \leq \operatorname{RLCT}_{W}(J ; \varphi)
$$

Proposition 2.5. Let $I \subset \mathcal{A}_{W}$ be an ideal, and $\operatorname{RLCT}_{W}(I ; \varphi)=(\lambda, \theta)$. Then:

$$
\operatorname{RLCT}_{W}\left(I^{r} ; \varphi\right)=(\lambda / r, \theta)
$$

Proof. It is obvious from the definition in terms of zeta-functions that, for an analytic function f, $\operatorname{RLCT}_{W}\left(f^{r} ; \varphi\right)=(\lambda / r, \theta)$ when $\operatorname{RLCT}_{W}(f ; \varphi)=(\lambda, \theta)$. Let the sum-of-squared-generators associated to I^{r} be $f^{(r)}$. By the previous observation, it suffices to demonstrate that

$$
f^{(r)} \text { is comparable to }\left(f^{(1)}\right)^{r}
$$

Letting $I=\left\langle f_{1}, \ldots, f_{k}\right\rangle$, and $\mathbf{e} \in \mathbb{N}^{k}$ range over multi-indexes, we have:

$$
\begin{aligned}
f^{(r)} & =\sum_{|\mathbf{e}|=r} \mathbf{f}^{2 \mathbf{e}} \\
\left(f^{(1)}\right)^{r} & =\sum_{|\mathbf{e}|=r}\binom{r}{\mathbf{e}} \mathbf{f}^{2 \mathbf{e}} .
\end{aligned}
$$

In the previous, we use the notations for a multi-index $\mathbf{e}=\left(e_{1}, \ldots, e_{k}\right)$:

$$
\begin{aligned}
|\mathbf{e}| & =\sum_{i=1}^{k} e_{i} \\
\mathbf{f}^{2 \mathbf{e}} & =f_{1}^{2 e_{1}} \cdots f_{k}^{2 e_{k}} \\
\binom{r}{\mathbf{e}} & =\frac{r!}{e_{1}!\cdots e_{k}!}
\end{aligned}
$$

Since

$$
\sum_{|\mathbf{e}|=r}\binom{r}{\mathbf{e}}=(1+\cdots+1)^{r}=k^{r}
$$

we have:

$$
f^{(r)} \leq\left(f^{(1)}\right)^{r} \leq k^{r} f^{(r)}
$$

which completes the proof.
We next observe two simple cases.
Proposition 2.6. Let m_{1}, \ldots, m_{n} be positive integers, and $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{m_{i}}$. Then if $\mathbb{R}_{\geq 0}^{n}$ denotes the positive orthant:

$$
\operatorname{RLCT}_{\mathbb{R}_{\geq 0}^{n}}(f ; 1)=\left(\sum_{i=1}^{n} \frac{1}{m_{i}}, 1\right)
$$

Proof. Calculating the Lapace integral for f :

$$
\begin{aligned}
Z(n) & =\int_{\mathbb{R}_{\geq 0}^{n}} e^{-n f(\mathbf{x})} d \mathbf{x} \\
& =\prod_{i=1}^{n} \int_{0}^{\infty} e^{-n x^{m_{i}}} d x \\
& =\prod_{i=1}^{n} \int_{0}^{\infty} e^{-u_{i}^{m_{i}}} \frac{d u_{i}}{n^{1 / m_{i}}} \\
& =\prod_{i=1} \text { const } \cdot n^{-1 / m_{i}} \\
& =\text { const } \cdot n^{-\sum_{i} \frac{1}{m_{i}}}
\end{aligned}
$$

Corollary 2.7. Set $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. Then

$$
\operatorname{RLCT}_{0}(\mathfrak{m} ; 1)=\left(\frac{n}{2}, 1\right)
$$

Corollary 2.8. Let $K=\operatorname{ord}_{0}(I)$ be the largest natural number so that $I \subset \mathfrak{m}^{K}$. Then

$$
\operatorname{RLCT}_{0}(I ; 1) \leq\left(\frac{n}{2 \cdot \operatorname{ord}_{0}(I)}, 1\right)
$$

Proof. By Proposition 2.5 and Corollaries 2.4 and 2.7

Proposition 2.9. Let $k=\left(k_{1}, \ldots, k_{n}\right)$ and $h=\left(h_{1}, \ldots, h_{n}\right)$ be vectors of non-negative integers, and ϕ a smooth function of compact support, with $\phi(0)>0$. Then if $\operatorname{RLCT}_{\mathbb{R}_{\geq 0}^{n}}\left(x^{k} ; x^{h} \phi\right)=(\lambda, \theta)$, we have:

$$
\lambda=\min _{i}\left\{\frac{h_{i}+1}{k_{i}}\right\},
$$

and θ is the number of i for which this minimum is attained.
Proof. See Lin11, Proposition 3.7], with more detail in AVGZ85, Lemma 7.3]. For $\phi(x)=1$, we can integrate our zeta function explicitly (taking $x \in[0, K]^{d}$ as ϕ is in fact compactly supported):

$$
\begin{aligned}
\zeta(z) & =\int_{W} d x x^{\tau-z \kappa} \\
& =\prod_{i=1}^{d} \int_{0}^{K} d x x^{\tau_{i}-z \kappa_{i}} \\
& =\prod_{i=1}^{d} \frac{K^{1+\tau_{i}-z \kappa_{i}}}{1+\tau_{i}-z \kappa_{i}} .
\end{aligned}
$$

In this situation we have poles for $1+\tau_{i}-z \kappa_{i}=0$, so the statement is clear. The general case follows by expanding ϕ into an $N^{\text {th }}$ order Taylor series and remainder. The (non-zero) constant term contributes the smallest pole, and by increasing N, the term involving the remainder can be made analytic.

Proposition 2.10. Let W_{1} and W_{2} be semi-analytic, and $J_{i} \subset \mathcal{A}_{W_{i}}$ ideals. Let $W=W_{1} \times W_{2}$, and by composing with the projections, we consider $\mathcal{A}_{W_{i}} \subset \mathcal{A}_{W}$. Suppose $\operatorname{RLCT}_{W_{i}}\left(J_{i} ; \varphi_{i}\right)=\left(\lambda_{i}, \theta_{i}\right)$. Then:

$$
\begin{aligned}
\operatorname{RLCT}_{W}\left(J_{1}+J_{2} ; \varphi\right) & =\left(\lambda_{1}+\lambda_{2}, \theta_{1}+\theta_{2}-1\right) \\
\operatorname{RLCT}_{W}\left(J_{1} J_{2} ; \varphi\right) & = \begin{cases}\left(\lambda_{1}, \theta_{1}\right) & \lambda_{1}<\lambda_{2} \\
\left(\lambda_{2}, \theta_{2}\right) & \lambda_{2}<\lambda_{1} \\
\left(\lambda_{1}, \theta_{1}+\theta_{2}\right) & \text { else }\end{cases}
\end{aligned}
$$

We set $\varphi=\left(\varphi_{1} \circ \pi_{1}\right)\left(\varphi_{2} \circ \pi_{2}\right)$.
Proof. Let f_{i} be the function defining $\operatorname{RLCT}_{W_{i}}\left(J_{i} ; \varphi_{i}\right)$. For the first equality, examine the Laplace integral:

$$
\begin{aligned}
Z(n) & =\int_{W} e^{-n\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right)} \varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\left(\int_{W_{1}} e^{-n f_{1}\left(x_{1}\right)} \varphi_{1}\left(x_{1}\right) d x_{1}\right)\left(\int_{W_{2}} e^{-n f_{2}\left(x_{2}\right)} \varphi_{2}\left(x_{2}\right) d x_{2}\right) \\
& \sim\left(C_{1} n^{-\lambda_{1}}(\log n)^{\theta_{1}-1}\right)\left(C_{2} n^{-\lambda_{2}}(\log n)^{\theta_{2}-1}\right) \\
& =C n^{-\lambda_{1}-\lambda_{2}}(\log n)^{\theta_{1}+\theta_{2}-2}
\end{aligned}
$$

In the same way, if $\zeta\left(x_{1}, x_{2}\right)$ is the zeta function associated to $J_{1} J_{2}$, we have that $\zeta\left(x_{1}, x_{2}\right)=\zeta_{1}\left(x_{1}\right) \zeta_{2}\left(x_{2}\right)$. Therefore, it has its smallest pole at $\min \left\{\lambda_{1}, \lambda_{2}\right\}$. If these coincide, their multiplicities add.

Lemma 2.11. Suppose that $\mathcal{W} \subset \mathbb{R}^{d}$ and $\mathcal{W}^{\prime} \subset \mathbb{R}^{d^{\prime}}$ are compact and semi-analytic, and $f=\left(f_{1}, \ldots, f_{d^{\prime}}\right)$: $\mathcal{W} \rightarrow \mathcal{W}^{\prime}$ and $g: \mathcal{W}^{\prime} \rightarrow \mathbb{R}$ are real analytic. Pick $\hat{w} \in \mathcal{W}$, set $\hat{f}=f(\hat{w})$. Then if $g(\hat{f})=0, \nabla g(\hat{f})=0$ and the Hessian $\nabla^{2} g(\hat{f})$ is positive definite, then:

$$
\operatorname{RLCT}_{N_{\hat{w}}}(g \circ f ; \varphi)=\operatorname{RLCT}_{N_{\hat{w}}}\left(\left\langle f_{1}-\hat{f}_{1}, \ldots, f_{d^{\prime}}-\hat{f}_{d^{\prime}}\right\rangle ; \varphi\right)
$$

Proof. See Lin11, Proposition 4.4]. The lemma follows from the fact that, in a small enough neighbourhood of \hat{f}, g is comparable (in the sense of Corollary 2.2) to a sum of squares:

$$
\left(u_{1}-\hat{f}_{1}\right)^{2}+\cdots+\left(u_{d^{\prime}}-\hat{f}_{d^{\prime}}\right)^{2}
$$

where $u_{1}, \ldots, u_{d^{\prime}}$ are coordinates on \mathcal{W}^{\prime}. The right-hand side is exactly the RLCT of f composed with such a sum of squares.

3 Resolution of Singularities

The result we use is the following, which sometimes goes by the name "local monomialisation". We follow Watanabe and Lin in using a version due to Atiyah Ati70.

Theorem 3.1 (Resolution of Singularities). Let f be a non-constant real analytic function on a neighbourhood of the origin in \mathbb{R}^{d}, with $f(0)=0$. Then there exists a triple (M, W, ρ) where:

- $W \subset \mathbb{R}^{d}$ is open, and contains 0,
- M is a d-dimensional real analytic manifold,
- $\rho: M \rightarrow W$ is a real analytic map.

The following also hold.

- ρ is proper, the inverse image of a compact set is compact.
- ρ is a real analytic isomorphism away from $\mathbb{V}_{W}(f)$. (That is, $M \backslash \mathbb{V}_{M}(f \circ \rho) \longrightarrow W \backslash \mathbb{V}_{W}(f)$.)
- Around any point $y \in \mathbb{V}_{M}(f \circ \rho)$, there are local coordinates $u=\left(u_{1}, \ldots, u_{d}\right)$ on some neighbourhood M_{y}, vectors κ and τ of non-negative integers, and strictly positive, real analytic functions a and h of u such that:

$$
f \circ \rho(u)=a(u) u^{\kappa}
$$

and the Jacobian determinant of ρ :

$$
\left|\rho^{\prime}(u)\right|=h(u) u^{\tau}
$$

Corollary 3.2. Given non-constant analytic functions f_{1}, \ldots, f_{l} in a neighbourhood of $0 \in \mathbb{R}^{d}$, all vanishing at the origin, there is a triple (M, W, ρ) as above which desingularises each f_{i}.

Proof. See Wat09, Theorem 2.8]. Apply the original form of the Theorem to the product $f_{1}(w) \cdots f_{l}(w)$, then observe Wat09, Theorem 2.7] that the resulting triple desingularises each f_{i}.

Now we want to apply this theorem to calculate RLCTs: in short, it works as follows Lin11, Lemma 3.8]. The statement is local, so we examine a particular point $w \in \mathbb{V}(f)$, and desingularise f at w, using the theorem. We may also assume that the triple (M, W, ρ) desingularises φ and each of the analytic functions $\psi_{1}, \ldots, \psi_{l}$ (if they vanish at w) which define $W \subset \mathbb{R}^{d}$. We can also show that the neighbourhood W can be shrunk to N_{w} such that $\rho^{-1}\left(N_{w}\right)$ is a union of coordinate neighbourhoods M_{y} as in the theorem. In each of these coordinates, the situation is as in Proposition 2.9, since the constraints are monomial, $\mathcal{M}_{y}=M_{y} \cap \rho^{-1} \mathcal{W}$ is a union of orthants, and the functions $f \circ \rho, \varphi \circ \rho$ are of the correct form. Using a partition of unity $\left\{\sigma_{y}\right\}$ subordinate to $\left\{\mathcal{M}_{y}\right\}$, we can write the zeta function as:

$$
\zeta(z)=\sum_{y} \int_{\mathcal{M}_{y}} d u|f \circ \rho(u)|^{-z}|\varphi \circ \rho(u) \| \phi \circ \rho(u)| \sigma_{y}(u) .
$$

The RLCT (λ, θ) associated to ζ is simply the smallest such pair (using the usual ordering) associated to one of the integrals:

$$
\zeta_{y}(z)=\int_{\mathcal{M}_{y}} d u|f \circ \rho(u)|^{-z}|\varphi \circ \rho(u)||\phi \circ \rho(u)| \sigma_{y}(u)
$$

which we may calculate as in the proposition.
The manifold M and map ρ are computed by transformations called blow-ups. The precise algorithm is beyond the scope of these notes, but the following subsection sketches how to find such a map by trial and error.

3.1 Blowing up

The abstract content of a blow up - framed here inside scheme theory - may be summarised by the following. The condition " $\tilde{\mathcal{J}}$ is invertible" may be replaced with " $\tilde{\mathcal{J}}$ is locally generated by a single non-zero-divisor" in the case that X is an integral scheme (eg a variety).

Proposition (Mur05, Proposition 3). Let X be a noetherian scheme, \mathcal{J} a coherent sheaf of ideals, and let $\pi: \tilde{X} \rightarrow X$ be the blowing up of \mathcal{J}. Then

- The inverse image ideal sheaf $\tilde{\mathcal{J}}:=\mathcal{J} \cdot \mathcal{O}_{\tilde{X}}$ is an invertible sheaf on \tilde{X}.
- If Y is the closed subset corresponding to \mathcal{J}, then $\pi^{-1} U \rightarrow U$ is an isomorphism, where $U=X \backslash Y$.

Theorem (Mur05, Theorem 9). Let X be a noetherian scheme, \mathcal{J} a coherent sheaf of ideals, and $\pi: \tilde{X} \rightarrow X$ the blowing-up of X with respect to \mathcal{J}. If $f: Z \rightarrow X$ is any morphism such that $\mathcal{J} \cdot \mathcal{O}_{Z}$ is an invertible sheaf of ideals on Z, then there exists a unique morphism $g: Z \rightarrow \tilde{X}$ making the following diagram commute

The monomialisation of Theorem 3.1 is achieved by a sequence of blow ups of the ambient space \mathbb{R}^{d} - the ideal sheaf \mathcal{J} is chosen to cut out a smooth subvariety V of \mathbb{R}^{d}, and the subvariety we chose is dictated by the singularities of f. We don't need to dive into the full generality of schemes and such, and in fact most of the blow ups I have come across have simply been of a coordinate axis. Let us examine these formulae. For a more rigorous and detailed accounts, see notes Smi, Hau14 or Spi20.

Definition 3.3. Let $X \subset \mathbb{R}^{n}$ be open, and $I=\left(f_{1}, \ldots, f_{r}\right)$ an ideal in \mathcal{A}_{X}. Define a map:

$$
\phi: X \backslash \mathbb{V}(I) \longrightarrow \mathbb{P}^{r-1}
$$

by $\phi(x)=\left[f_{1}(x): \cdots: f_{r}(x)\right]$ in homogenous coordinates. Then the blowing-up \tilde{X} is the closure of the graph of ϕ, ie, the set:

$$
\tilde{X}=\overline{\left\{\left(x,\left[f_{1}(x): \cdots: f_{r}(x)\right]\right) \mid x \in X \backslash \mathbb{V}(I)\right\}} \subset X \times \mathbb{P}^{r-1}
$$

The map $\pi: \tilde{X} \rightarrow X$ is the projection onto the first coordinate.
Let us examine in detail the case where $X=\mathbb{R}^{d}$ and $I=\left(x_{1}, \ldots, x_{d}\right)$, so $\mathbb{V}(I)$ is the origin. Then, identifying \mathbb{P}^{d-1} with lines through the origin in $\mathbb{R}^{d}, \tilde{X}$ has the description:

$$
\tilde{X}=\{(x, l) \mid x \in l\} \subset \mathbb{R}^{d} \times \mathbb{P}^{d-1}
$$

If $x \neq 0$, it defines a unique line $l \in \mathbb{P}^{d-1}$ such that $x \in l$ - this is why π is an isomorphism away from the preimage of the origin. Since $0 \in l$ for every $l \in \mathbb{P}^{d-1}, E:=\pi^{-1}(0)=\mathbb{P}^{d-1}$. To see why this has a

Figure 1: The blowing-up of \mathbb{R}^{2} with centre $(0,0)$, two lines and their preimages, as well as the exceptional locus E, are marked. Note that the top and bottom and glued together, so that \tilde{X} is topologically an open Möbius strip.
chance of desingularising some subvariety, first observe that for two distinct lines $l, l^{\prime} \subset \mathbb{R}^{d}$, the inverse images $\pi^{-1}(l \backslash 0)$ and $\pi^{-1}\left(l^{\prime} \backslash 0\right)$ approach E in different places. Specifically, they limit towards $(0, l)$ and $\left(0, l^{\prime}\right)$. With $d=2$ we can visualise this as in Figure 1 .

A possible singularity at zero is a node, take $f=y^{2}-x^{2}(x+1)$ for example, which crosses twice through the origin with slopes ± 1. The strict transform of the singular variety $Y=\mathbb{V}(f)$ is

$$
\tilde{Y}:=\overline{\pi^{-1}(Y \backslash\{0\})},
$$

(so called to differentiate it from the total transform $\pi^{-1}(Y)$). This splits apart the two crossings, as they limit towards two different points in E (see Figure 2).

We can give a more helpful description as follows. Let $\left[u_{1}: \cdots: u_{d}\right]$ be homogenous coordinates on \mathbb{P}^{d-1}, and observe that the point $\left(x_{1}, \ldots, x_{d}\right)$ lies in the line so defined if and only if:

$$
x_{i} u_{j}-x_{j} u_{i}=0, \quad \forall i, j=1, \ldots, d
$$

Therefore, the blowing-up \tilde{X} of the origin in \mathbb{R}^{d} may be expressed as the vanishing locus:

$$
\begin{equation*}
\tilde{X}=\mathbb{V}\left(x_{i} u_{j}-x_{j} u_{i}: i, j=1, \ldots, d\right) \subset \mathbb{R}^{d} \times \mathbb{P}^{d-1} \tag{1}
\end{equation*}
$$

This gets us somewhere if we consider the affine charts on \mathbb{P}^{d-1} (in the latter expression the term u_{i} / u_{i} is skipped):

$$
\left.U_{i}=\mathbb{R}^{d} \times\left\{u_{1}: \cdots: u_{d}\right] \mid u_{i} \neq 0\right\} \cong \mathbb{R}^{d} \times\left\{\left(\frac{u_{1}}{u_{i}}, \ldots, \frac{u_{d}}{u_{i}}\right)\right\} \subset \mathbb{R}^{2 d-1}
$$

Then, $\tilde{X} \cap U_{i} \cong \mathbb{R}^{d}$ with coordinates $\left(t_{1}^{(i)}, \ldots, t_{d}^{(i)}\right)$ given by:

$$
t_{j}^{(i)}= \begin{cases}x_{i} & i=j \\ u_{j} / u_{i} & i \neq j\end{cases}
$$

Figure 2: The strict transform of the nodal cubic.

Solving for x_{j}, the map π has the expression:

$$
\pi\left(t_{1}^{(i)}, \ldots, t_{d}^{(i)}\right)=\left(t_{1}^{(i)} t_{i}^{(i)}, \ldots, t_{i}^{(i)}, \ldots, t_{d}^{(i)} t_{i}^{(i)}\right)
$$

This is, usually, all that one needs: see for example Lin12, §9] or War21. Example 3.23]. This example extends easily to the case $I=\left(x_{1}, \ldots, x_{r}\right)$ for $r<d-\operatorname{set} t_{j}^{(i)}=x_{j}$ for $j>r$.

We can extend eq. (1) to the general case. Let $I=\left(f_{1}, \ldots, f_{r}\right)$, so that our equations become:

$$
f_{i}(x) u_{j}-f_{j}(x) u_{i}=0, \quad i, j=1, \ldots, r .
$$

Observe that this defines a subset of $\mathbb{R}^{d} \times \mathbb{P}^{r-1}$ as each equation is homogenous in the u_{i}. The charts are (away from the exceptional locus):

$$
\begin{equation*}
U_{i} \cap \Gamma_{\phi}=\left\{(x, \phi(x)) \mid f_{i}(x) \neq 0\right\} . \tag{2}
\end{equation*}
$$

A nice way of expressing this is the following ($\widehat{\text { Spi20 }}, \S 1.3]$): let $A=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$ be the coordinate ring of \mathbb{R}^{d}, then the affine piece $\tilde{X} \cap U_{i}$ has associated ring (where Y_{i} is skipped):

$$
\frac{A\left[Y_{1}, \ldots, Y_{r}\right]}{\left(f_{i}(X) Y_{j}-f_{j}(X)\right)}=A\left[\frac{f_{1}(X)}{f_{i}(X)}, \ldots, \frac{f_{r}(X)}{f_{i}(X)}\right] .
$$

The expression on the left only works if the f_{1}, \ldots, f_{r} form a regular sequence. That is, if for every $m<r$ g_{m} is a non-zero-divisor in $A /\left(f_{1}, \ldots, f_{m-1}\right)$, meaning the fractions f_{i} / f_{j} do not satisfy any non-trivial linear relations over A. For example (Hau14 Example 4.43]), if $I=\left(x^{2}, x y, y^{3}\right) \subset A=K[x, y]$, then

$$
A\left[\frac{x y}{x^{2}}, \frac{y^{3}}{x^{2}}\right] \cong A\left[\frac{x}{y}\right],
$$

which is different to

$$
\frac{A[u, v]}{\left(x^{2} u-x y, x^{2} v-y^{3}\right)} .
$$

Namely, we have to add the equation $u^{2} y-v$. This corresponds to the fact that the closure of the graph in eq. (2) is smaller than expected, due to the extra linear relations satisfied by the generators of I.

References

[Ati70] M. F. Atiyah. Resolution of singularities and division of distributions. Communications on Pure and Applied Mathematics, 23(2):145-150, 1970.
[AVGZ85] V. Arnold, A. Varchenko, and S. Gusein-Zade. Singularities of differentiable maps. Birkhäuser, 1985.
[Hau14] H. Hauser. Blowups and resolution, 2014. Available at https://arxiv.org/abs/1404.1041.
[Lin11] S. Lin. Algebraic Methods for Evaluating Integrals in Bayesian Statistics. PhD thesis, University of California, Berkeley, 2011.
[Lin12] S. Lin. Useful facts about RLCT, 2012. Available at https://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.303.6529\&rep=rep1\&type=pdf.
[Mur05] D. Murfet. Blowing up, 2005. Available at http://therisingsea.org/notes/Section2.7. 1-BlowingUp.pdf.
[Smi] K. E. Smith. Jyväskylä summer school: Resolution of singularities. Available at http: //www.math.lsa.umich.edu/~kesmith/JyvSummerSchool.pdf.
[Spi20] M. Spivakovsky. Resolution of Singularities: an Introduction. In Handbook of Geometry and Topology of Singularities I, pages 183-242. Springer International Publishing, 2020. Available at https://hal.archives-ouvertes.fr/hal-02413995.
[War21] T. K. Waring. Geometric perspectives on program synthesis and semantics. Master's thesis, The University of Melbourne, 2021. Available at https://thomaskwaring.github.io
[Wat09] S. Watanabe. Algebraic geometry and statistical learning theory. Cambridge University Press, 2009.

[^0]: ${ }^{1}$ Strictly speaking, we should assume that W has non-empty interior (see Wat09, Chapter 6] for the "Fundamental Conditions"). In practice, we will often use the simplices $\Delta^{m} \subset \mathbb{R}^{m+1}$, which do not satisfy this condition - it can however be arranged in the obvious way.

