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1 Introduction

The key geometric invariant in Singular Learning Theory is the Real Log Canonical Threshold (RLCT)
[Wat09]. It can be calculated by resolution of singularities, but in practice this is fiddly. There are
some examples, in Watanabe’s book and Lin’s thesis [Lin11], but I found the process of figuring this out
moderately tedious. I will collect here some results and examples that I have come across, most of which
will not be original, but will hopefully act as a crash course to make practical calculations easier. The
notes [Lin12] are also useful, but focus on the case where the singularity in question is on the interior.
Parts are verbatim or paraphrased from my thesis [War21].

Throughout, W ⊂ Rn will be a compact semi-analytic set, ie:

W = {x | ψ1(x) ≥ 0, . . . , ψl(x) ≥ 0},

for some analytic functions ψ1, . . . , ψl
1. The ring of real-analytic functions on W is AW .

Definition 1.1. The RLCT of f ∈ AW on W with the prior φ, is a pair RLCTW (f, φ) = (λ, θ) defined
by either of the following equivalent conditions [Lin11, §4.1.1]

• The log of the “Laplace integral”

logZ(n) = log

∫
W

exp (−n|f(w)|)|φ(w)|dw,

is asymptotically −λ log(n) + (θ − 1) log log(n) as n→ ∞.

• The zeta function

ζ(z) =

∫
W

|f(w)|−z|φ(w)|dw,

has smallest pole λ, with multiplicity θ.

1Strictly speaking, we should assume that W has non-empty interior (see [Wat09, Chapter 6] for the “Fundamental
Conditions”). In practice, we will often use the simplices ∆m ⊂ Rm+1, which do not satisfy this condition — it can
however be arranged in the obvious way.

1



We order pairs (λ1, θ1) < (λ2, θ2) if, for large enough n:

λ1 log(n)− (θ1 − 1) log log(n) < λ2 log(n)− (θ2 − 1) log log(n).

We extend this to ideals of AW in the following way. By Lemma 2.3 the value is independent of the
generators chosen.

Definition 1.2. The RLCT of an ideal I = ⟨f1, . . . , fr⟩ is identified with that of the function f21 +· · ·+f2r .

Caution: this differs by a factor of 2 from the definition in [Lin11]. As a result:

RLCTW (f ;φ) = (λ, θ)

RLCTW (⟨f⟩;φ) = (λ/2, θ).

First we collect some useful results for calculations, which are proven in the sequel.

• If |g| ≤ c|f | for some constant c, then RLCTW (g;φ) ≤ RLCTW (f ;φ) (Lemma 2.1).

• Analogously perhaps, if I ⊂ J are ideals, then RLCTW (I;φ) ≤ RLCTW (J ;φ) (Corollary 2.4).
Also, for every r > 0 (Proposition 2.5):

RLCTW (I;φ) = (λ, θ) =⇒ RLCTW (Ir;φ) = (λ/r, θ).

• Suppose that P ∈W ⊂ Rn lies in the interior, and let mP denote the maximal ideal at P . Then if
ordP (I) is the largest integer K so that I ⊂ mK , we have (Corollary 2.8):

RLCTW (I; 1) ≤
(

n

2 · ordP (I)
, 1

)
.

For functions, this agrees with the usual order of vanishing at P .

• Let W1 and W2 be semi-analytic, and Ji ⊂ AWi ideals. Let W = W1 ×W2, and by composing
with the projections, we consider AWi ⊂ AW . Suppose RLCTWi(Ji;φi) = (λi, θi). Then Proposi-
tion 2.10 gives us the formulae:

RLCTW (J1 + J2;φ) = (λ1 + λ2, θ1 + θ2 − 1)

RLCTW (J1J2;φ) =


(λ1, θ1) λ1 < λ2

(λ2, θ2) λ2 < λ1

(λ1, θ1 + θ2) else

where φ = φ1 × φ2.

• The primary reason for examining the RLCTs of ideals is that, using the result of Lemma 2.11, we
can replace a complicated function with a simpler ideal. See below for the precise statement, but
here is a special case. Let Z be a finite set, and ∆Z the standard simplex over Z. If p :W → ∆Z is
a parametrised family of probability distributions over Z, and q ∈ ∆Z is some “true distribution”,
set

K(w) = DKL

(
q || p(w)

)
:=
∑
z∈Z

q(z) log

(
q(z)

p(z)

)
.

In this case K has the same RLCT as the ideal:〈
p(w)(z)− q(z) : z ∈ Z

〉
.

A more meaty result is the following, which is proved in [Lin11].
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Theorem 1.3. Let f and φ be real-analytic on W , and ϕ smooth and strictly positive. Then around
every w ∈W there is a neighbourhood Nw ⊂W so that:

RLCTNw
(f ;φϕ) = RLCTNw

(f ;φ).

Moreover,
RLCTW (f ;φϕ) = min

w∈V(f)
RLCTNw

(f ;φ).

In what follows, given w ∈W , Nw will always denote the neighbourhood of the theorem, and by

RLCTw(f ;φ),

we mean the RLCT calculated on an open neighbourhood in Rn (ie ignoring the boundary of W ). We
have that,

RLCTw(f ;φ) ≤ RLCTNw(f ;φ).

This follows as, if U ⊂ Rn is our open neighbourhood, we can shrink Nw ⊂ U so that ZNw
(n) ≤ ZU (n)

for every n.
The theorem is proven by reduction to the case where f and φ are monomials, integrated over the

positive orthant (Proposition 2.9). This uses resolution of singularities, which is deep and difficult —
Theorem 3.1. Roughly, this (algorithmic) process takes a possibly singular subvariety X of a smooth
variety W , and produces a map π : W̃ → W which is an isomorphism over the complement of the
singular locus of X, and which “desingularises” X. Specifically, the strict transform:

X̃ := π−1(X \ Sing(X))

is smooth (see [Hau14, Lecture 7] for more precise statements of the various forms of this theorem).
In Section 3 we sketch a loose understanding of this process, which allows one to calculate RLCTs in
practice.

The core of the resolution algorithm is a transform called blowing up (again, we sketch this is slightly
more detail in Section 3.1). To desingularise X ⊂W , we pick some smooth subvariety Z ⊂ Sing(X), and
compute the blowing-up, which is a map from a new variety BlZ(W ) → W . (Note that the blowing up
is performed on W , but the centre Z is determined by X.) Repeating this process eventually gets us our
resolution. The general case is given below, but in every example from SLT that I have seen the centre
Z is some coordinate subspace.

Let W = Rm × Rn, with coordinates (x1, . . . , xm, y1, . . . , xn), and Z = Rm. Then BlZ(W ) has the
description:

BlZ(W ) := {(x, y, l) | x ∈ l} ⊂ Rm × Rn × Pm−1.

With homogenous coordinates [u1 : · · · : um] on Pm−1, the affine piece um ̸= 0 has coordinates
(xm, y1, . . . , yn, u1, . . . , um−1), and the map π is:

π(xm, y1, . . . , yn, u1, . . . , um−1) = (u1xm, . . . , um−1xm, xm, y1, . . . , yn).

More detail is given below, but this is about as far as [Wat09] goes.

2 Results

Lemma 2.1. Let f, g be analytic functions on W . If there is a constant c > 0 such that |g(w)| ≤ c|f(w)|
for every w ∈W , then:

RLCTW (g;φ) ≤ RLCTW (f ;φ).
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Proof. Using monotonicity, we have that Zg(n) ≤ Zf (cn). Asymptotically this gives us:

λg log(n)− (θg − 1) log log(n) ≤ λf log(cn)− (θf − 1) log log(cn) +O(1).

This implies the required inequality, as the constant gets absorbed into the constant term.

Corollary 2.2. If there are constants c1, c2 > 0 so that c1|f(w)| ≤ |g(w)| ≤ c2|f(w)|, then RLCTW (f ;φ) =
RLCTW (g;φ). Such functions are called comparable.

Lemma 2.3. Let f1, . . . , fr and g1, . . . , gs be analytic on W. Then if < g1, . . . , gs >⊆< f1, . . . , fr >,
then

RLCTW (g21 + . . . , g2s ;φ) ≤ RLCTW (f21 + · · ·+ f2r ;φ).

Proof. For each i = 1, . . . , s, we can find analytic functions h1, . . . , hr on W so that:

gi = h1f1 + · · ·+ hrfr.

Using the Cauchy-Schwartz inequality, and the fact that W is compact:

g2i =

∑
j

hjfj

2

≤

∑
j

h2j

∑
j

f2j

 ≤ ci

∑
j

f2j

 .

For some constant ci. This implies that

∑
i

g2i ≤

(∑
i

ci

)∑
j

f2j

 ,

which by Lemma 2.1 implies the result.

Corollary 2.4. If I ⊂ J are ideals of AW , then:

RLCTW (I;φ) ≤ RLCTW (J ;φ).

Proposition 2.5. Let I ⊂ AW be an ideal, and RLCTW (I;φ) = (λ, θ). Then:

RLCTW (Ir;φ) = (λ/r, θ).

Proof. It is obvious from the definition in terms of zeta-functions that, for an analytic function f ,
RLCTW (fr;φ) = (λ/r, θ) when RLCTW (f ;φ) = (λ, θ). Let the sum-of-squared-generators associated to
Ir be f (r). By the previous observation, it suffices to demonstrate that

f (r) is comparable to
(
f (1)

)r
.

Letting I = ⟨f1, . . . , fk⟩, and e ∈ Nk range over multi-indexes, we have:

f (r) =
∑
|e|=r

f2e

(
f (1)

)r
=
∑
|e|=r

(
r

e

)
f2e.
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In the previous, we use the notations for a multi-index e = (e1, . . . , ek):

|e| =
k∑

i=1

ei

f2e = f2e11 · · · f2ekk(
r

e

)
=

r!

e1! · · · ek!

Since ∑
|e|=r

(
r

e

)
= (1 + · · ·+ 1)r = kr,

we have:

f (r) ≤
(
f (1)

)r
≤ krf (r),

which completes the proof.

We next observe two simple cases.

Proposition 2.6. Let m1, . . . ,mn be positive integers, and f(x1, . . . , xn) =
∑n

i=1 x
mi
i . Then if Rn

≥0

denotes the positive orthant:

RLCTRn
≥0
(f ; 1) =

(
n∑

i=1

1

mi
, 1

)
.

Proof. Calculating the Lapace integral for f :

Z(n) =

∫
Rn

≥0

e−nf(x)dx

=

n∏
i=1

∫ ∞

0

e−nxmi
dx

=

n∏
i=1

∫ ∞

0

e−u
mi
i

dui
n1/mi

=
∏
i=1

const · n−1/mi

= const · n−
∑

i
1

mi .

Corollary 2.7. Set m = (x1, . . . , xn). Then

RLCT0(m; 1) =
(n
2
, 1
)
.

Corollary 2.8. Let K = ord0(I) be the largest natural number so that I ⊂ mK . Then

RLCT0(I; 1) ≤
(

n

2 · ord0(I)
, 1

)
.

Proof. By Proposition 2.5 and Corollaries 2.4 and 2.7.
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Proposition 2.9. Let k = (k1, . . . , kn) and h = (h1, . . . , hn) be vectors of non-negative integers, and ϕ
a smooth function of compact support, with ϕ(0) > 0. Then if RLCTRn

≥0
(xk;xhϕ) = (λ, θ), we have:

λ = min
i

{
hi + 1

ki

}
,

and θ is the number of i for which this minimum is attained.

Proof. See [Lin11, Proposition 3.7], with more detail in [AVGZ85, Lemma 7.3]. For ϕ(x) = 1, we can
integrate our zeta function explicitly (taking x ∈ [0,K]d as ϕ is in fact compactly supported):

ζ(z) =

∫
W

dxxτ−zκ

=

d∏
i=1

∫ K

0

dxxτi−zκi

=

d∏
i=1

K1+τi−zκi

1 + τi − zκi
.

In this situation we have poles for 1+ τi − zκi = 0, so the statement is clear. The general case follows by
expanding ϕ into an N th order Taylor series and remainder. The (non-zero) constant term contributes
the smallest pole, and by increasing N , the term involving the remainder can be made analytic.

Proposition 2.10. Let W1 and W2 be semi-analytic, and Ji ⊂ AWi ideals. Let W = W1 ×W2, and by
composing with the projections, we consider AWi ⊂ AW . Suppose RLCTWi(Ji;φi) = (λi, θi). Then:

RLCTW (J1 + J2;φ) = (λ1 + λ2, θ1 + θ2 − 1)

RLCTW (J1J2;φ) =


(λ1, θ1) λ1 < λ2

(λ2, θ2) λ2 < λ1

(λ1, θ1 + θ2) else

We set φ = (φ1 ◦ π1)(φ2 ◦ π2).

Proof. Let fi be the function defining RLCTWi
(Ji;φi). For the first equality, examine the Laplace

integral:

Z(n) =

∫
W

e−n(f1(x1)+f2(x2))φ1(x1)φ2(x2)dx1dx2

=

(∫
W1

e−nf1(x1)φ1(x1)dx1

)(∫
W2

e−nf2(x2)φ2(x2)dx2

)
∼
(
C1n

−λ1(log n)θ1−1
) (
C2n

−λ2(log n)θ2−1
)

= Cn−λ1−λ2(log n)θ1+θ2−2.

In the same way, if ζ(x1, x2) is the zeta function associated to J1J2, we have that ζ(x1, x2) = ζ1(x1)ζ2(x2).
Therefore, it has its smallest pole at min{λ1, λ2}. If these coincide, their multiplicities add.

Lemma 2.11. Suppose thatW ⊂ Rd andW ′ ⊂ Rd′
are compact and semi-analytic, and f = (f1, . . . , fd′) :

W → W ′ and g : W ′ → R are real analytic. Pick ŵ ∈ W, set f̂ = f(ŵ). Then if g(f̂) = 0, ∇g(f̂) = 0

and the Hessian ∇2g(f̂) is positive definite, then:

RLCTNŵ
(g ◦ f ;φ) = RLCTNŵ

(⟨f1 − f̂1, . . . , fd′ − f̂d′⟩;φ).
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Proof. See [Lin11, Proposition 4.4]. The lemma follows from the fact that, in a small enough neighbour-

hood of f̂ , g is comparable (in the sense of Corollary 2.2) to a sum of squares:

(u1 − f̂1)
2 + · · ·+ (ud′ − f̂d′)2,

where u1, . . . , ud′ are coordinates on W ′. The right-hand side is exactly the RLCT of f composed with
such a sum of squares.

3 Resolution of Singularities

The result we use is the following, which sometimes goes by the name “local monomialisation”. We follow
Watanabe and Lin in using a version due to Atiyah [Ati70].

Theorem 3.1 (Resolution of Singularities). Let f be a non-constant real analytic function on a neigh-
bourhood of the origin in Rd, with f(0) = 0. Then there exists a triple (M,W, ρ) where:

• W ⊂ Rd is open, and contains 0,

• M is a d-dimensional real analytic manifold,

• ρ :M →W is a real analytic map.

The following also hold.

• ρ is proper, the inverse image of a compact set is compact.

• ρ is a real analytic isomorphism away from VW (f). (That is, M \ VM (f ◦ ρ) −→W \ VW (f).)

• Around any point y ∈ VM (f◦ρ), there are local coordinates u = (u1, . . . , ud) on some neighbourhood
My, vectors κ and τ of non-negative integers, and strictly positive, real analytic functions a and h
of u such that:

f ◦ ρ(u) = a(u)uκ,

and the Jacobian determinant of ρ:
|ρ′(u)| = h(u)uτ .

Corollary 3.2. Given non-constant analytic functions f1, . . . , fl in a neighbourhood of 0 ∈ Rd, all
vanishing at the origin, there is a triple (M,W, ρ) as above which desingularises each fi.

Proof. See [Wat09, Theorem 2.8]. Apply the original form of the Theorem to the product f1(w) · · · fl(w),
then observe [Wat09, Theorem 2.7] that the resulting triple desingularises each fi.

Now we want to apply this theorem to calculate RLCTs: in short, it works as follows [Lin11, Lemma
3.8]. The statement is local, so we examine a particular point w ∈ V(f), and desingularise f at w, using
the theorem. We may also assume that the triple (M,W, ρ) desingularises φ and each of the analytic
functions ψ1, . . . , ψl (if they vanish at w) which defineW ⊂ Rd. We can also show that the neighbourhood
W can be shrunk to Nw such that ρ−1(Nw) is a union of coordinate neighbourhoodsMy as in the theorem.
In each of these coordinates, the situation is as in Proposition 2.9: since the constraints are monomial,
My =My ∩ ρ−1W is a union of orthants, and the functions f ◦ ρ, φ ◦ ρ are of the correct form. Using a
partition of unity {σy} subordinate to {My}, we can write the zeta function as:

ζ(z) =
∑
y

∫
My

du |f ◦ ρ(u)|−z|φ ◦ ρ(u)||ϕ ◦ ρ(u)|σy(u).
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The RLCT (λ, θ) associated to ζ is simply the smallest such pair (using the usual ordering) associated to
one of the integrals:

ζy(z) =

∫
My

du |f ◦ ρ(u)|−z|φ ◦ ρ(u)||ϕ ◦ ρ(u)|σy(u),

which we may calculate as in the proposition.
The manifold M and map ρ are computed by transformations called blow-ups. The precise algorithm

is beyond the scope of these notes, but the following subsection sketches how to find such a map by trial
and error.

3.1 Blowing up

The abstract content of a blow up — framed here inside scheme theory — may be summarised by the
following. The condition “J̃ is invertible” may be replaced with “J̃ is locally generated by a single
non-zero-divisor” in the case that X is an integral scheme (eg a variety).

Proposition ([Mur05], Proposition 3). Let X be a noetherian scheme, J a coherent sheaf of ideals, and
let π : X̃ → X be the blowing up of J . Then

• The inverse image ideal sheaf J̃ := J · OX̃ is an invertible sheaf on X̃.

• If Y is the closed subset corresponding to J , then π−1U → U is an isomorphism, where U = X \Y .

Theorem ([Mur05], Theorem 9). Let X be a noetherian scheme, J a coherent sheaf of ideals, and
π : X̃ → X the blowing-up of X with respect to J . If f : Z → X is any morphism such that J · OZ is
an invertible sheaf of ideals on Z, then there exists a unique morphism g : Z → X̃ making the following
diagram commute

Z X̃

X.
f

g

π

The monomialisation of Theorem 3.1 is achieved by a sequence of blow ups of the ambient space Rd

— the ideal sheaf J is chosen to cut out a smooth subvariety V of Rd, and the subvariety we chose is
dictated by the singularities of f . We don’t need to dive into the full generality of schemes and such, and
in fact most of the blow ups I have come across have simply been of a coordinate axis. Let us examine
these formulae. For a more rigorous and detailed accounts, see notes [Smi, Hau14] or [Spi20].

Definition 3.3. Let X ⊂ Rn be open, and I = (f1, . . . , fr) an ideal in AX . Define a map:

ϕ : X \ V(I) −→ Pr−1,

by ϕ(x) = [f1(x) : · · · : fr(x)] in homogenous coordinates. Then the blowing-up X̃ is the closure of the
graph of ϕ, ie, the set:

X̃ =
{
(x, [f1(x) : · · · : fr(x)]) | x ∈ X \ V(I)

}
⊂ X × Pr−1.

The map π : X̃ → X is the projection onto the first coordinate.

Let us examine in detail the case where X = Rd and I = (x1, . . . , xd), so V(I) is the origin. Then,
identifying Pd−1 with lines through the origin in Rd, X̃ has the description:

X̃ = {(x, l) | x ∈ l} ⊂ Rd × Pd−1.

If x ̸= 0, it defines a unique line l ∈ Pd−1 such that x ∈ l — this is why π is an isomorphism away from
the preimage of the origin. Since 0 ∈ l for every l ∈ Pd−1, E := π−1(0) = Pd−1. To see why this has a

8



Figure 1: The blowing-up of R2 with centre (0, 0), two lines and their preimages, as well as the exceptional
locus E, are marked. Note that the top and bottom and glued together, so that X̃ is topologically an
open Möbius strip.

chance of desingularising some subvariety, first observe that for two distinct lines l, l′ ⊂ Rd, the inverse
images π−1(l \ 0) and π−1(l′ \ 0) approach E in different places. Specifically, they limit towards (0, l) and
(0, l′). With d = 2 we can visualise this as in Figure 1.

A possible singularity at zero is a node, take f = y2 − x2(x + 1) for example, which crosses twice
through the origin with slopes ±1. The strict transform of the singular variety Y = V(f) is

Ỹ := π−1(Y \ {0}),

(so called to differentiate it from the total transform π−1(Y )). This splits apart the two crossings, as they
limit towards two different points in E (see Figure 2).

We can give a more helpful description as follows. Let [u1 : · · · : ud] be homogenous coordinates on
Pd−1, and observe that the point (x1, . . . , xd) lies in the line so defined if and only if:

xiuj − xjui = 0, ∀i, j = 1, . . . , d.

Therefore, the blowing-up X̃ of the origin in Rd may be expressed as the vanishing locus:

X̃ = V(xiuj − xjui : i, j = 1, . . . , d) ⊂ Rd × Pd−1. (1)

This gets us somewhere if we consider the affine charts on Pd−1 (in the latter expression the term ui/ui
is skipped):

Ui = Rd × {u1 : · · · : ud] | ui ̸= 0} ∼= Rd ×
{(

u1
ui
, . . . ,

ud
ui

)}
⊂ R2d−1.

Then, X̃ ∩ Ui
∼= Rd with coordinates (t

(i)
1 , . . . , t

(i)
d ) given by:

t
(i)
j =

{
xi i = j

uj/ui i ̸= j.

9



Figure 2: The strict transform of the nodal cubic.

Solving for xj , the map π has the expression:

π(t
(i)
1 , . . . , t

(i)
d ) = (t

(i)
1 t

(i)
i , . . . , t

(i)
i , . . . , t

(i)
d t

(i)
i ).

This is, usually, all that one needs: see for example [Lin12, §9] or [War21, Example 3.23]. This example

extends easily to the case I = (x1, . . . , xr) for r < d — set t
(i)
j = xj for j > r.

We can extend eq. (1) to the general case. Let I = (f1, . . . , fr), so that our equations become:

fi(x)uj − fj(x)ui = 0, i, j = 1, . . . , r.

Observe that this defines a subset of Rd × Pr−1 as each equation is homogenous in the ui. The charts
are (away from the exceptional locus):

Ui ∩ Γϕ = {(x, ϕ(x)) | fi(x) ̸= 0}. (2)

A nice way of expressing this is the following ([Spi20, §1.3]): let A = R[X1, . . . , Xd] be the coordinate
ring of Rd, then the affine piece X̃ ∩ Ui has associated ring (where Yi is skipped):

A[Y1, . . . , Yr](
fi(X)Yj − fj(X)

) = A

[
f1(X)

fi(X)
, . . . ,

fr(X)

fi(X)

]
.

The expression on the left only works if the f1, . . . , fr form a regular sequence. That is, if for every m < r
gm is a non-zero-divisor in A/(f1, . . . , fm−1), meaning the fractions fi/fj do not satisfy any non-trivial
linear relations over A. For example ([Hau14, Example 4.43]), if I = (x2, xy, y3) ⊂ A = K[x, y], then

A

[
xy

x2
,
y3

x2

]
∼= A

[
x

y

]
,

which is different to
A[u, v]

(x2u− xy, x2v − y3)
.

Namely, we have to add the equation u2y− v. This corresponds to the fact that the closure of the graph
in eq. (2) is smaller than expected, due to the extra linear relations satisfied by the generators of I.
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