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Abstract

We provide a — to our knowledge — new bijective argument for certain determinantal
identities involving lattice paths in Young diagrams. Using the same ideas, we provide an explicit
answer to a question (listed as unsolved1) raised in Exercise 6.27 c) of Stanley’s Enumerative
Combinatorics.

Here we consider a problem raised in Exercises 6.26 and 6.27 of [Sta99, p. 232]. These problems
are solved (see [CRS71, §3 Theorem 2], [Rad97] and the solutions on [Sta99, p. 267]), but here we
give a concise bijective proof, using the Lindström-Gessel-Viennot lemma.

Lemma 1. Let G be a locally finite directed acyclic graph, and A = {a1, . . . , an} and B =
{b1, . . . , bn} sets of source and destination vertices, respectively. Write e(a, b) for the number of
paths from a to b in G, and define a matrix M by Mi,j = e(ai, bj). Then,

detM =
∑

P=P1,...,Pn

sgn(σP ),

where the sum is over the collection of n-tuples of vertex-disjoint paths (P1, . . . , Pn) in G, where
σP is a permutation of [n], and Pi is a path from ai to bσP (i).

Proof. See [AZ03, Chapter 29].

The following problem is Exercise 6.26 a) in [Sta99]. Let D be a Young diagram of a partition
λ, and fill each box (i, j) ∈ D (numbering “matrix-wise”: down then across) with the number of
paths from (λ′

j , j) to (i, λi), using steps north and east, and staying within the diagram D. That
is, (i, j) is filled with the number of paths from the lowest square in its column to the rightmost
square in its row. Call this number Di,j . For example, with λ = (5, 4, 3, 3):

16 7 2 1 1

6 3 1 1

3 2 1

1 1 1

(1)

Then, the matrix formed by any square sub-array with a 1 in the lower right has determinant 1.
The same array of integers arises in discussions of so-called ballot sequences [CRS71, §1], and of

1In an addendum [Sta99, p. 584], Stanley notes that Robin Chapman settled the existence problem stated in the
exercise. This argument doesn’t appear to be available anywhere, and in this note we provide the required object
explicitly.
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Young’s lattice of partitions [Sta75, p. 223]. For instance, from the diagram in eq. (1) we have:

det

16 7 2
6 3 1
3 2 1

 = 1.

This result follows immediately from lemma 1. Indeed, let G be the graph with the boxes of
D as vertices, and directed edges from each box to its northern and eastern neighbours. Given a
square n× n sub-array as above, let a1, . . . , an be the “feet” of the columns of D corresponding to
the columns of M , and b1, . . . , bn the ends of the rows. Any path system P as above must have
σP = id, as a pair of paths ai → bj and aj → bj must share a vertex. Moreover, there is exactly
one vertex-disjoint tuple P of paths with σp = id. The 1 in the lower right of M forces the path
an → bn to be a “hook” up then right. This implies the same of the path an−1 → bn−1 and so forth.
The unique collection of paths in our running example is (poorly) rendered in eq. (2).

↬ → → → →
↑ ↬ → →
↑ ↑ ↬

↑ ↑ ↑

(2)

Exercise 6.27 offers an extension, which is also resolved by our method. Suppose that D is
self-conjugate (ie λ = λ′), and let n be the size of the Durfee square of the diagram D — that is,
the largest n such that λn ≥ n. Let x1, . . . , xn be a basis for a real vector space V , and define an
inner product on V by

⟨xi, xj⟩ = Di,j .

We exhibit an integral orthonormal basis for V . If Gk = det[Di,j ]k≤i,j≤n is the “Gram determi-
nant”, then, using Cramer’s rule, the result of applying the Gram-Schmidt process to the vectors
xn, xn−1, . . . (in that order) is a basis yn, . . . , y1 of V given by:

Gj−1 · yj = det


xj ⟨j, j + 1⟩ . . . ⟨j, n⟩
xj+1 ⟨j + 1, j + 1⟩ . . . ⟨j + 1, n⟩
...

...
...

xn ⟨n, j + 1⟩ . . . ⟨n, n⟩

 = det


xj Dj,j+1 . . . Dj,n

xj+1 Dj+1,j+1 . . . Dj+1,n
...

...
...

xn Dn,j+1 . . . Dn,n


Observe that the matrix in the formal determinant given here is the (n−j+1)×(n−j+1) submatrix
of the Durfee square of D, with the first column replaced by xj , . . . , xn. As such, the above result
implies that the Gram determinant Gj−1 = 1, and as such the basis y1, . . . , yn is integral. The norm
of yj is Gj/Gj−1 = 1.

Using the above interpretation of determinants in terms of lattice paths, we can derive the
coefficients explicitly. Expanding our expression by cofactors, we obtain an expression of the form
yj =

∑n
i=j(−1)i−jcijxi, with coefficients

cij = det



Dj,j+1 . . . Dj,n
...

...

D̂i,j+1 . . . D̂i,n
...

...
Dn,j+1 . . . Dn,n

 ,
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where the hat denotes omitting that row. This is the path matrix from aj+1, . . . , an to bj , . . . , b̂i, . . . , bn.
For example, with j = 1 and i = 2, using the tableau given above, cij is the path determinant of:

First observe that, again, we can restrict ourselves to tuples (Pj , . . . , Pn) with σP = id, for the same
reason as above. Secondly, for any k > i, the path Pk from ak → bk is uniquely determined (indeed,
it is the same “hook” described in the original problem). For each k < i, the path Pk : ak+1 → bk
is determined by a number mk so that it has the form:

(λ′
k+1, k + 1), . . . , (k + 1, k + 1), . . . , (k + 1,mk), (k,mk), . . . , (k, λk),

where k + 1 ≤ mk ≤ λk In the above example, we have mk ∈ {2, 3, 4}, corresponding to the paths:

, and

Since Pk cannot intersect Pk+1, we have mk < mk+1, and to avoid going outside the Young diagram,
we must have mk ≤ λk+1. In fact, since λk ≥ λk+1, applying the second requirement to mi−1 is
sufficient. Therefore, the sequence mj , . . . ,mi−1 is uniquely determined by an (i − j)-subset of
{j + 1, . . . , λi}. Since any such a sequence determines a unique tuple Pj , . . . , Pn, we have:

cij =

(
λi − j

i− j

)
.

In this example, we glossed over the requirement that λ be self-conjugate, which allows for the
interpretation of the above as an inner product. The argument goes through regardless, demon-
strating the following identity for i ≥ j:

⟨yj , xi⟩ =
n∑

k=j

(−1)j−kDki

(
λk − j

k − j

)
= δij . (3)

Applied to the conjugate, we have:

⟨y′j , xi⟩ =
n∑

k=j

(−1)j−kDik

(
λ′
k − j

k − j

)
= δij .

Combined, these identities determine the values Dij for 1 ≤ i, j ≤ n. Cutting off initial rows or
columns from the Young diagram D, the values of Dij outside the Durfee square could also be
computed.

This result reduces to, and provides a bijective proof of, the special cases of Exercise 6.27 a)
and b). If λ = (2n+ 1, 2n, . . . , 2, 1) then Dij = C2n+2−i−j , and the orthonormal basis yj is:

yj =
n+1∑
i=j

(−1)i−j

(
2n+ 2− i− j

i− j

)
xi,
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If we let primes denote the reflection i′ = (n+ 1)− i, we get ⟨xi′ , xj′⟩ = Ci′+j′ and,

yj′ =

j′∑
i′=0

(−1)j
′−i′

(
i′ + j′

j′ − i′

)
xi′ ,

as expected.
As a final example, if λ = (n, n, . . . , n) is the partition of n2, then Dij =

(
2n−i−j
n−i

)
, and cij =(

n−j
i−j

)
. The identity in question is:

⟨yj , xi⟩ =
n∑

k=j

(−1)j−k

(
2n− i− k

n− i

)(
n− j

k − j

)
= δij .

Making the substitution m = n−m on the indexes i, j, k, and extending the sum with terms = 0,
this the sum is: ∑

k

(−1)k−j

(
i+ k

i

)(
j

j − k

)
=

(
i

i− j

)
, (4)

where we have used the following, which is [Knu97, §1.2.6 eq. 23]:∑
k

(−1)r−k

(
r

k

)(
s+ k

n

)
=

(
s

n− r

)
.

Since we require that j ≥ i (opposite to eq. (3) after the substitution made in eq. (4)), this implies
the claimed identity.
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